
Optimal transport and enriched categories

Simon Willerton
University of Sheffield

Cambridge
November 2021



Optimal transport: primal problem

Suppliers S1, . . . ,Ss , supply σ1, . . . , σs ; receivers R1, . . .Rr , demand ρ1, . . . ρr .
Cost of moving one unit from Si to Rj is kij ∈ R≥0

kij R1 R2 R3

S1 1 4 6
S2 2 10 1
S3 8 7 8

σ

S1 10
S2 11
S3 7

ρ

R1 8
R2 12
R3 8

S110 S211 S37

R18 R212 R38

1 2
8

4
10 7

6
1 8

Definition (Primal optimal transport problem)

Given k, σ and ρ as above, find a transport plan {αij}ij which minimizes

cost = ∑ij
kijαij

subject to the supply and demand constraints:

∑i
αij ≥ ρj ; ∑j

αij ≤ σi .
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Linear programming duality

Definition (Primal linear programming problem)

Given {be}, {cf } and {Aef } find non-negative x1, . . . , xn which minimizes

∑f
cf xf

such that ∑f Aef xf ≤ be .

Definition (Dual linear programming problem)

Given {be}, {cf } and {Aef } find non-negative y1, . . . , ym which maximizes

∑e
yebe

such that ∑e yeAef ≤ cf .

Theorem (Strong linear programming duality)

inf
feasible x

∑f
cf xf = sup

feasible y
∑e

yebe .
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Optimal transport: dual problem

Definition (Dual optimal transport problem)

Given k, σ and ρ, find prices v1, . . . , vs and u1, . . . , ur which maximize

revenue = ∑i
ujρj − ∑i

viσi

subject to the competitive pricing constraint: uj − vi ≤ kij .

The Fable
A transportation company offers alternative transportation for the goods.
They have an unusual pricing structure.
They will buy the goods for unit price vi from supplier Si .
They will sell the goods for unit price uj to receiver Rj .
The constraint ensures that they are cheaper than the original transportation.

Theorem
Minimum cost of primal problem equals maximum revenue of dual problem.
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Example optimal solutions

S110 S211 S37

R18 R212 R38

1 2
8

4
10 7

6
1 8

R1 R2 R3

S1 5 5 0 10
S2 3 0 8 11
S3 0 7 0 7

8 12 8

cost = 88

v

S1 3
S2 2
S3 0

u

R1 4
R2 7
R3 3

revenue = 88

4/16



Duality within the dual

Suppose prices {vi} are chosen by the transportation company at suppliers.
What are the highest feasible prices {v̂j} to sell to the receivers?

v̂j := mini{kij + vi}

Similarly for {uj} prices at receivers, the lowest feasible prices at supplier i is

ũi := max(maxj{uj − kij}, 0).

This process is idempotent: ˆ̂̃v = v̂ .
If (v , u) is an optimal pricing plan then we can assume tightness, i.e. that

v = ũ and v̂ = u,

so we can look for optimal pricing plans in the centre of an ‘adjunction’:

{prices at suppliers, v} {prices at recievers, u}.
̂
˜
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Metric spaces and enriched categories

small category V-category metric space

set of objects set of objects set of points

morphism set C(x , y) hom object C(x , y) ∈ Ob(V) distance d(x , y) ∈ [0,∞]

C(x , y)× C(y , z) → C(x , z) C(x , y)⊗ C(y , z) → C(x , z) d(x , y) + d(y , z) ≥ d(x , z)

id ∈ C(x , x) 1 → C(x , x) 0 = d(x , x)

We can define the notion of V-category for any monoidal category (V ,⊗, 1).
Eg

(Set,×, {∗}), (Truth,∧,T), (R+ = ([0,∞],≥),+, 0)

The notion of V-functor for metric spaces is ‘distance non-increasing map’.
Moreover, R+ is complete, cocomplete, closed symmetric monoidal:

[x , y ] = y −̇ x := max(y − x , 0)

This allows, eg, definition of functor V-categories.
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V-profunctors (for V sufficiently nice)

Profunctor f : C −7−→ D for V-categories C and D means f : Cop ⊗D → V .
Composition C f−7−→ D g−7−→ E defined by

g ◦ f (c , e) :=
∫ d

g(d , e)⊗ f (c , d) = mind (g(d , e) + f (c, d))

These form a bicategory Prof which is ‘composition closed’ (aka biclosed),
i.e., composition with fixed profunctor has a right adjoint.

Prof(C,D) Prof(C, E) Prof(D, E)
g◦−

g▷− −◁f

−◦f

⊣ ⊣

g ▷ h(c , d) :=
∫
e
[g(d , e), h(c , e)] = maxd (g(d , e) −̇ h(c , e))

Note that if ∗ is the unit V-category then

Prof(∗,D) = Fun(D,V) = VD.
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Modelling optimal transport with enriched categories

We enrich over ‘cost’ which we take to be non-negative real numbers.
Our V-categories are generalized metric spaces.

Suppliers: S discrete R+-category

Receivers: R discrete R+-category

Transport cost: k : S −7−→ R R+-profunctor

Prices at suppliers: v : S → R+ R+-functor

Prices at receivers: u : R → R+ R+-functor

The price duality in the dual problem arises as the ‘Kan-type’ adjunction.

v ∈ R
S
+ R

R
+ ∋ u

k◦−

k▷−

⊣

This is categorically inevitable.
The tight price plans are those in the centre Z of this adjunction:

Z := {(v , u) ∈ R
S
+ × R

R
+ | k ◦ v = u; v = k ▷ u}.
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A first example

S18 S27

R115

2 3

The profunctor is k = ( 23 ).
Calculate the tight price plans:

Z ⊂ R
2
+ × R

1
+

0

7

u1

0

5

0

4

v1
v2

Here are the projections drawn in a more standard way.

0 5
0

4

v1

v2

0 7
u1
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More examples

( 2 1
3 5 )

0 4 8
0

4

8

0 2 4 6 8
0

2

4

6

8

( 2 7
3 5 )

0 4 8
0

4

8

0 4 8
0

4

8
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And more examples(
4 6
10 5
11 11
8 14

)

(A 2d complex in 4d)

0 5 10 15 20
0

5

10

15

20

(
1 4 6
2 10 1
8 7 8

)
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Properties of quantale-enriched adjunctions

Every adjunction is idempotent

RLR = R and LRL = L.

Can use standard adjunction properties,
e.g. left adjoints preserve colimits.

VC : colimits are pointwise product and copow-
ers.
In our case this means that Fix(RL) is the trop-
ical (min,+) span of the rows of k.

Z (L ⊣ R)

C ×D

Fix(RL) Fix(LR)

Im(R) Im(L)

C D

⊂

≃ πC

≃

πD

∼=
L

R

L

R
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Tropical convex hull
The usual convex hull of points {pi}si=1 ⊂ Rr is{

∑s

i=1
αipi | ∑s

i=1
αi = 1, αi ∈ R+

}
.

In the tropical version ⊕ = min, · = + and the tropical convex hull is{⊕s

i=1
αi · pi | minsi=1 αi = 0, αi ∈ R+

}
.

0 4 8 12
0

4

8

12 The finite part of the set of tight price
plans for receivers (where we need to
look for optimal price plans) is the trop-
ical convex hull set of costs to each
supplier.
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Isbell-type adjunction

Given a V-profunctor f : C −7−→ D, from the closed structure we get another
adjunction

V (Cop) (VD)op
−▷k

−▷k

⊣

The centre of this adjunction (the profunctor nucleus) arises in other
optimization and related areas.
▶ tight spans of metric spaces (server placement on networks)
▶ fuzzy concept analysis
▶ Legendre-Fenchel transform
▶ multi-commodity flow

( 2 1
3 1 ) over R+ :

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3
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Star autonomy implies Kan-centres are Isbell-centres

Suppose V is closed monoidal and for some d ∈ V the map

v 7→ [[v , d ], d ]

is an isomorphism for all v then V is star-autonomous.

(−)⋆ = [−, d ] : V ∼−→ Vop

▶ R and Truth are star-autonomous,
▶ R+ is not.

Given k : C −7−→ D get k⋆ : Cop −7−→ Dop.

If V is ⋆-autonomous, then all Kan-type centres arise as Isbell-type centres.

VC VD

VC VDop

k◦−

=
k▷−

⊣

(−)⋆

−▷k⋆

−▷k⋆

⊣
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Summary

It seems that (enriched) category theory could be an organising structure for
optimization and related areas similarly to how it is for other disciplines.
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