Looking at metric spaces as enriched categories Simon Willerton University of Sheffield December 2022

Enriched category theory.

Category of "scalar valued functors" a.k.a (co-) presheaves [E, Set] & [E^{op}, Set] contravorient & functors Eq - G group C=BG $[BG, Set] = Act_G = Category of left G-actions$ and interwiners[BG°P, Set] = GACt = Category of right G-actions - X topological space C=Ox [Ox, set] = presheaves on X

Yoneda Lenna C [[] Set] Think S [] $c \mapsto (d \mapsto C(d,c))$ $s \mapsto \delta_s$ Eg Cayley's Theorem C = BG

Not always correct to use Set as the scalars! Eq A an algebra then for A and RepA the hom-sets are vector spaces RepA = { linear functors A -> Vect } Want to do category theory over a different base category". Need: monoidal category $(\mathcal{V}, \mathfrak{B}, \mathbb{I})$ \mathcal{V} category, $\mathfrak{D}: \mathcal{V} \times \mathcal{V} \to \mathcal{V}$, $\mathbb{I} \in ob \mathcal{V}$

 $E_{g}(Set, x, \{x\}), (Vect, \otimes, C), ([[0, \infty],], +, 0)$

 R_+ $a \rightarrow b$

Calor	77 0001
Category	
collection obe	Collection
• $\forall x, y$ $C(x, y) \in ob Set$	$\bullet \forall x, y \mathcal{Z}(x, y)$
• $\forall x, y, z$ $C(x, y) \times Z(y, z) \rightarrow C(x, z)$	$\cdot \forall x, y, z \in (x, y) \otimes$
• $\forall x$ $id_x \in \mathcal{C}(x, x)$	• ∀x 1]-:
$\{x\} \rightarrow \mathcal{Z}(x,x)$ + axioms	+ axioms
2-functor F: Z-J	F: obと->obg
L F _x	$j: \mathcal{Z}(x,y) \rightarrow \mathfrak{D}(f)$
If D is nice, then D is	>-category and
[C,D] into a V-category	$Rep_A = \Box B$

 $\supset C(x,x)$

function $F(x), F(y) \rightarrow \mathcal{V}$ can make A, Vecf]

$$R_{+} = enriched category
Collection ob X
• $\forall x, y$ $X(x, y) \in [0, \infty]$
 $\forall x, y, 2$ $X(x, y) + X(y, 2) \ge X(x, 2)$
• $\forall x$ $O \ge X(x, x)$ (C
+ NO axioms
An $R_{+} - category$ is a generalized metric
(i) Not necessarily symmetric (ii) Can have
(iii) $d(x, y) = 0 \implies x = y$
• $R_{+} - functor$ is a "short map" f: X=Y, X$$

An

 $\mathcal{T} = \mathcal{X}(\mathcal{X},\mathcal{X})$

IC space. e a distance

 $X(x,x') \ge Y(f(x), f(x'))$

 $r' \mapsto d(x', x))$ dding bact subsets of M3. B

Magnitude

Generalizing notions of Euler characteristic finite V-cats > has size finite categories [Leinster] finite sets/finite groups finite pose Card (S) (Card (G) [Wall] (Finite pose Card (S) (Trota) finite posets

Suppose X finite metric space, a we

$$W: X \rightarrow \mathbb{R}$$
 such that $\sum_{x} e^{-X(x_0, x)} w(x)$
If a weighting exists, define magnin
 $|X| := \sum_{x} w(x)$
More interesting to consider magnitude
 $t \mapsto |t \times |$ for
 $t \mapsto |t \times |$ for
Magnitude measures "effective number of q

tude

function: t>0 __ |£X|→#X as t→∞

10000

t

Diversity

Model ecosystem as a set of species with a metric measuriny difference of species: ISI is a measure of biodiversity. [Solow-Polasky 1994] Traditional diversity measures use the relative proportions of species - related to notions of entropy, Renyi, Shannon etc. [Leinster-Cobbold] combined the two approaches to give a family of divosity indices using difference & velative populion. Magnitude [S], gives maximum possible diversity.

Stavros D. Veresoglou a, b 📯 🖾, Jeff R. Powell ^c, John Davison ^d, Ylva Lekberg ^e, Matthias C. Rillig ^{a, b}

The Leinster and Cobbold indices improve inferences about microbial diversity

Khovanov homology: I bigraded homology theory KH., of links such that polynomial in gt Jones (L) = Z(-1)ⁱgⁱ</sup> rk(KH_i,(L)) ~ X(KH(L)) I similar categorification of magnitude! Simple example when $\mathcal{V}=((N, 2), +, 0)$, restrict to graphs $M:=|t-|_{q=e^{-t}}: Graphs \to Z[Iq] M(I) = 5 - loq + loq^2 - 20q^4$ [Willerton - Hepworth] I bigraded homology theory MH. of graphs such that M(G) = X(MH.(G))

[Leinster-Shulman]] bigraded homology theory of finite metric spaces that recovers magnitude as its Euler characteristic.

 $M((...) = 5 - 10q + 10q^2 - 20q^4 + 40q^5 - 40q^6 - 90q^8 + ...$

								k			
			0	1	2	3	4	5	6	7	8
		0	5								
		1		10							
M(I,I,I,I,I,I,I,I,		2			10						
		3			10	10					
K,L		4				30	10				
		5					50	10			
	l	6					20	70	10		
		7						80	90	10	
		8							180	110	10
		9							40	320	130
		10								200	500
		11									560

8 9 10 11

Magnitude for infinite metric spaces
$L_n = \frac{1}{n \text{ points}} as n \rightarrow n L_n $
[Meckes] For X compact $ X = \sup_{A \subset X} A $. If $X = \mathbb{R}^m \mathcal{L} A_n \to X$ then $ A_n \to X$. Growth rate of $ tX $ is Minkowski d
$\begin{bmatrix} Carberg-Barcelo & Willow \end{bmatrix} = \frac{R^3 + 6R^2 + 1}{3!}$
$ tB^{2n+1} $ is ratio of determinants of $ tB^{2n} $ unknown in general!
[Goffeng-Gimperlein-Louca] If Xn is Riem. mfd w
as t-> ω $ t \times \sim \frac{1}{n! \omega_n} (vol(x)t^n + \frac{n+1}{2} voll)$

limension.

12R + 6

Bessel Polynomials

 $(\partial X) t^{n-1} + \dots)$

Tight span

Take V= R+

Tight spon (convex hull (injective envelope rediscovered many times For general X have I(X) is "directed tight spon" - Kemajou - Künzi - Olela Otafudu Also - Hirai-koichi (multi commodity flow) N Develin-Sturnfels (tropical algebra)