Two 2-traces

Simon Willerton University of Sheffield

$$\operatorname{Tr}^{\circlearrowright}(f) := \left\{ \begin{array}{c} \theta & f \\ V \end{array} \right\}$$
 $\operatorname{Tr}^{\circlearrowright}(f) := \left\{ \begin{array}{c} f & V \end{array} \right\}$

Traces

What is a trace?

$$\operatorname{Tr}(f \circ g) = \operatorname{Tr}(g \circ f)$$
 $\operatorname{Tr}(f) = \operatorname{Tr}(a \circ f \circ a^{-1})$

Traces in a monoidal category

In $(\mathcal{C}, \otimes, \mathbf{1})$, an object V^* is left-dual to V if there exist morphisms

such that

If *V* is also left dual to V^* then *V* and V^* are bidual. If *V* has a bidual and $V \stackrel{f}{\leftarrow} V$ define

In (Vect, $\otimes, \mathbb{C})$ this gives the usual trace on finite dimensional vector spaces.

Transposes (or adjoints or duals)

If V and W have biduals then $V \stackrel{f}{\leftarrow} W$ has a transpose (or is cyclic) if

Theorem (Trace property)

If $V \stackrel{f}{\leftarrow} W$ and $W \stackrel{g}{\leftarrow} V$ with f having a transpose then

$$\operatorname{Tr}(f \circ g) = \underbrace{f \quad g}_{f} = \underbrace{f^{f}}_{g}$$

$$= \underbrace{f \quad g}_{f} = \operatorname{Tr}(g \circ f)$$

Examples of monoidal bicategories

	objects	1-morphisms	composition	2-morphisms	
Span	Sets	$y^{x^{T}} $ x	ZKT XYS	$\bigvee_{Y}^{T} \bigvee_{X}^{T'}$	×
Bim	Algebras/ $\mathbb C$	$_BM_A$	$_{C}N_{B}\otimes_{B}{}_{B}M_{A}$	$Hom_{B,A}({}_BM_A,{}_BM_A')$	$\otimes_{\mathbb{C}}$
$\mathcal{V} ext{-Mod}$	$\mathcal{V} ext{-cats}$	$\mathcal{C}^{op} \otimes \mathcal{D} \to \mathcal{V}$	$\otimes_{\mathcal{D}}$	\mathcal{V} -nat trans	\otimes
2-Tang	pts in plane			cobordisms	Ц
Var	\mathbb{C} -manifolds	\mathcal{E}^{\bullet} \downarrow $Y \times X$	convolution	$\operatorname{Ext}_{Y \times X}^{ullet}(\mathcal{E}^{ullet}, \mathcal{F}^{ullet})$	×
DBim	Diff algs/ $\mathbb C$	$\rightarrow {}_BM_A^i \rightarrow {}_BM_A^{i-1} \rightarrow$	$\otimes^L_\mathcal{B}$	$\operatorname{Ext}_{B \times A^{\operatorname{op}}}^{\bullet}({}_{B}M_{A}^{\bullet}, {}_{B}N_{A}^{\bullet})$	$\otimes_{\mathbb{C}}$

Biduals in a monoidal bicategory

In C, an object V^* is left-dual to V if there exist 1-morphisms

and 2-isomorphisms

If V is also left dual to V^* then V and V^* are bidual.

Transposes in monoidal bicategories

A 1-morphism $V \stackrel{f}{\leftarrow} W$ has a transpose (or is cyclic) if there is a 1-morphism $W^* \stackrel{f^*}{\leftarrow} V^*$.

together with isomorphisms

satisfying some conditions.

This gives for example

Examples of duals in monoidal bicategories

	object	bidual	evaluation	morphism	transpose
Span	X	X	$\overset{\checkmark}{\swarrow}\overset{\Delta}{\swarrow}_{\times} \times X$	$_{Y}^{\swarrow}{}^{T}_{\times}{}_{X}$	$x^{\swarrow^{T}}$
Bim	Α	A^{op}	$_{\mathbb{C}}A_{A\otimes A^{\operatorname{op}}}$	_В М _А	$_{A^{\mathrm{op}}}M_{B^{\mathrm{op}}}$
$\mathcal{V} ext{-Mod}$	\mathcal{C}	\mathcal{C}^op	$\mathcal{C}^{op} \otimes \mathcal{C} \otimes \star \xrightarrow{Hom} \mathcal{V}$	$\mathcal{C}^{op} \otimes \mathcal{D} \to \mathcal{V}$	$(\mathcal{D}^{op})^{op} \otimes \mathcal{C}^{op} \to \mathcal{V}$
2-Tang	$\overline{\cdot \cdot \cdot}$	$\overline{\cdot \cdot \cdot}$	G.		
Var	X	X	$ \begin{array}{c} \mathcal{O}_{\Delta} \\ \downarrow \\ \star \times X \times X \end{array} $	\mathcal{E}^{\bullet} \downarrow $Y \times X$	\mathcal{E}^{\bullet} \downarrow $X \times Y$
DBim	A*	$A^{ullet ext{op}}$	$_{\mathbb{C}}A_{A^{ullet}\otimes A^{ullet}}^{ullet}$	_B • M _A •	$_{A}$ • op M_{B}^{\bullet} • op

The round trace

If *V* has a bidual and $V \stackrel{f}{\leftarrow} V$ define the round trace:

$$\operatorname{Tr}^{\circlearrowright}(f) := \underbrace{f \quad V} \in \operatorname{\mathsf{1-Hom}}(\mathbf{1},\mathbf{1}).$$

Theorem (Trace property)

If $V \xleftarrow{f} W$ and $W \xleftarrow{g} V$ with f having a transpose then

$$\operatorname{Tr}^{\circlearrowright}(f\circ g)\cong\operatorname{Tr}^{\circlearrowright}(g\circ f).$$

$$\operatorname{Tr}^{\circlearrowright}(f \circ g) = \underbrace{\begin{array}{c} f & g \\ \end{array}} \stackrel{f^{*}}{\Longrightarrow} \underbrace{\begin{array}{c} f^{*} \\ g & f \end{array}} = \operatorname{Tr}^{\circlearrowright}(g \circ f)$$

The diagonal trace

This can be defined in a bicategory without monoidal structure.

If V is an object of a bicategory and $V \stackrel{f}{\leftarrow} V$ define the diagonal trace:

$$\operatorname{Tr}^{\searrow}(f) := 2\operatorname{-Hom}(\operatorname{Id}_V, f) = \left\{ \begin{array}{c} \theta & f \\ V & V \end{array} \right\}$$

Theorem (Trace property)

If $W \stackrel{a}{\leftarrow} V$ and $V \stackrel{a'}{\leftarrow} W$ with a 2-morphism $a \circ a' \stackrel{\eta}{\leftarrow} Id_W$ then you get a (functorial) morphism between sets (or V-objects):

In particular if $W \stackrel{a}{\leftarrow} V$ is an equivalence then

$$\operatorname{Tr}^{\searrow}(f) \cong \operatorname{Tr}^{\searrow}(a \circ f \circ a^{-1}).$$

Examples of traces in monoidal bicategories

	object	endo, f	$Tr^{\circlearrowright}(f)$	$Tr^{\searrow}(f)$
Span	X	$x^{\swarrow^{T}} \times_{X}$	"loops in <i>T</i> "	"choice of loop at each $x \in X$ "
Bim	Α	$_AM_A$	$M/\{ma-am\}$ coinvariants	$\{m \in M \mid am = ma\}$ invariants
$\mathcal{V} ext{-Mod}$	\mathcal{C}	$\mathcal{C}^{op} \otimes \mathcal{C} \xrightarrow{F} \mathcal{V}$	$\int^c F(c,c)$	$\int_c F(c,c)$
2-Tang	$\overline{\cdot \cdot \cdot}$			
Var	Χ	$\mathcal{E}^{\bullet} \downarrow \\ X \times X$	$HH_{ullet}(X,\mathcal{E}^ullet)$	$HH^ullet(X,\mathcal{E}^ullet)$
DBim	A•	A• M _A •	$HH_{ullet}(A^ullet, M^ullet)$	$HH^ullet(A^ullet, M^ullet)$

Dimension

The dimension of an object can be defined to be the trace of the identity.

$$\mathsf{Dim}^{\circlearrowright}(V) := \mathsf{Tr}^{\circlearrowright}(\mathsf{Id}_V) = \underbrace{\qquad \qquad }_{V} \in \mathsf{1-Hom}(\mathbf{1},\mathbf{1})$$
 $\mathsf{Dim}^{\backprime}(V) := \mathsf{Tr}^{\backprime}(\mathsf{Id}_V) = \mathsf{2-Hom}(\mathsf{Id}_V,\mathsf{Id}_V) = \underbrace{\qquad \qquad }_{V}$

- ▶ Dim \(\(V \) is a commutative monoid
- ▶ $Dim^{\searrow}(V)$ acts on $Dim^{\circlearrowright}(V)$

Examples of dimensions in monoidal bicategories

	object, V	$Dim^{\circlearrowright}(\mathit{V})$	$Dim^{\searrow}(V)$
Span	Χ	X	{*}
Bim	Α	A/[A,A]	Z(A)
$\mathcal{V} ext{-Mod}$	\mathcal{C}	$\int^c \mathcal{C}(c,c)$	$\mathcal{V} ext{-NAT}\left(Id_{\mathcal{C}},Id_{\mathcal{C}} ight)$
2-Tang	$\overline{\cdot \cdot \cdot}$		
Var	X	$HH_{ullet}(X)$	$HH^{ullet}(X)$
DBim	A^{ullet}	$HH_{ullet}(A^ullet)$	$HH^ullet(A^ullet)$