Two 2-traces

Simon Willerton
University of Sheffield

$$
\operatorname{Tr} \searrow(f):=\left\{\begin{array}{|cc|}
& { }^{f}{ }^{f} \\
& \\
& \\
\hline
\end{array}\right\}
$$

Traces

What is a trace?

$$
\begin{aligned}
\operatorname{Tr}(f \circ g) & =\operatorname{Tr}(g \circ f) \\
\operatorname{Tr}(f) & =\operatorname{Tr}\left(a \circ f \circ a^{-1}\right)
\end{aligned}
$$

Traces in a monoidal category

In $(\mathcal{C}, \otimes, \mathbf{1})$, an object V^{*} is left-dual to V if there exist morphisms

such that

If V is also left dual to V^{*} then V and V^{*} are bidual.
If V has a bidual and $V \stackrel{f}{\leftarrow} V$ define

In $($ Vect $, \otimes, \mathbb{C})$ this gives the usual trace on finite dimensional vector spaces.

Transposes (or adjoints or duals)

If V and W have biduals then $V \stackrel{f}{\leftarrow} W$ has a transpose (or is cyclic) if

Theorem (Trace property)
If $V \stackrel{f}{\leftarrow} W$ and $W \stackrel{g}{\leftarrow} V$ with f having a transpose then

Examples of monoidal bicategories

objects

Span Sets

Bim	Algebras $/ \mathbb{C}$	${ }_{B} M_{A}$
\mathcal{V}-Mod	\mathcal{V}-cats	$\mathcal{C}^{\mathrm{op}} \otimes \mathcal{D} \rightarrow \mathcal{V}$
2-Tang	pts in plane	

Var
\mathbb{C}-manifolds

$$
\stackrel{\downarrow}{ } \quad \times X
$$

convolution
$\operatorname{Ext}_{Y \times X}^{\bullet}\left(\mathcal{E}^{\bullet}, \mathcal{F}^{\bullet}\right)$

$\operatorname{Hom}_{B, A}\left({ }_{B} M_{A},{ }_{B} M_{A}^{\prime}\right)$
\mathcal{V}-nat trans
cobordisms
$\operatorname{Ext}_{B \times A \circ p}^{\bullet}\left({ }_{B} M_{A}^{\bullet},{ }_{B} N_{A}^{\bullet}\right)$

Biduals in a monoidal bicategory

In \mathcal{C}, an object V^{*} is left-dual to V if there exist 1-morphisms

and 2-isomorphisms

such that the Swallowtail Relations hold, e.g.,

If V is also left dual to V^{*} then V and V^{*} are bidual.

Transposes in monoidal bicategories

A 1-morphism $V \stackrel{f}{\leftarrow} W$ has a transpose (or is cyclic) if there is a 1-morphism $W^{*} \stackrel{f^{*}}{\leftarrow} V^{*}$:

together with isomorphisms

satisfying some conditions.
This gives for example

Examples of duals in monoidal bicategories

object bidual evaluation
morphism transpose

Span	X	X	$\star^{k^{x} \stackrel{\Delta}{x} \times x}$	$y^{\swarrow^{T}} \searrow_{x}$	$x^{\swarrow^{T}} \searrow_{Y}$
Bim	A	$A^{\text {op }}$	${ }_{\mathbb{C}} A_{A \otimes A^{\circ} \mathrm{p}}$	${ }_{B} M_{A}$	$A^{\circ \rho} M_{B}{ }^{\text {Op }}$
\mathcal{V}-Mod	\mathcal{C}	$\mathcal{C}^{\text {op }}$	$\mathcal{C}^{\text {op }} \otimes \mathcal{C} \otimes \star \xrightarrow{\text { Hom }} \mathcal{V}$	$\mathcal{C}^{\text {op }} \otimes \mathcal{D} \rightarrow \mathcal{V}$	$\left(\mathcal{D}^{\text {op }}\right)^{\text {op }} \otimes \mathcal{C}^{\text {op }} \rightarrow \mathcal{V}$
2-Tang					
			\mathcal{O}_{Δ}	$\mathcal{E}{ }^{\bullet}$	\mathcal{E}^{\bullet}
Var	X	X	$\star \stackrel{\downarrow}{x} \times x$	$Y \stackrel{\downarrow}{\times} X$	$\stackrel{\downarrow}{\times} Y$
DBim	A^{\bullet}	$A^{\bullet \circ p}$	$\mathbb{C} A_{A}^{\bullet} \bullet \otimes A^{\bullet \text { op }}$	$B^{\bullet} \bullet M_{A}^{\bullet}$	A^{\bullet} op $M_{B}^{\bullet \bullet \text { op }}$

The round trace

If V has a bidual and $V \underset{\leftarrow}{\leftarrow}$ define the round trace:

$$
\operatorname{Tr}(f):=
$$

Theorem (Trace property)
If $V \stackrel{f}{\leftarrow} W$ and $W \stackrel{g}{\leftarrow} V$ with f having a transpose then

The diagonal trace

This can be defined in a bicategory without monoidal structure. If V is an object of a bicategory and $V \stackrel{f}{\leftarrow} V$ define the diagonal trace:

$$
\operatorname{Tr} \searrow(f):=2-\operatorname{Hom}\left(\operatorname{Id}_{v}, f\right)=\left\{\begin{array}{|cc|}
& \left.{ }^{f}\right\rfloor^{f} \\
& \\
& \\
&
\end{array}\right\}
$$

Theorem (Trace property)

If $W \stackrel{a}{\leftarrow} V$ and $V \stackrel{a^{\prime}}{\leftarrow} W$ with a 2-morphism $a \circ a^{\prime} \stackrel{\eta}{\Leftarrow} I d_{W}$ then you get a (functorial) morphism between sets (or \mathcal{V}-objects):

In particular if $W \stackrel{a}{\longleftarrow} V$ is an equivalence then

$$
\operatorname{Tr} \searrow(f) \cong \operatorname{Tr} \searrow\left(a \circ f \circ a^{-1}\right)
$$

Examples of traces in monoidal bicategories

	object	endo, f	Tr ${ }^{\circ}(f)$	Tr $\searrow(f)$
Span	X	$x^{\swarrow^{T} \searrow_{x}}$	"loops in T"	"choice of loop at each $x \in X$ "
Bim	A	${ }_{A} M_{A}$	$\begin{gathered} M /\{m a-a m\} \\ \text { coinvariants } \end{gathered}$	$\{m \in \underset{\text { invariants }}{M \mid a m=m a\}}$
\mathcal{V}-Mod	\mathcal{C}	$\mathcal{C}^{\text {op }} \otimes \mathcal{C} \xrightarrow{\text { F }} \mathcal{V}$	$\int^{c} F(c, c)$	$\int_{c} F(c, c)$
2-Tang				$\left\{\begin{array}{l} -\infty \\ -\infty \end{array}\right\}$
Var	X	$\begin{gathered} \mathcal{E}^{\bullet} \\ \quad \downarrow \\ X \times X \end{gathered}$	$\mathrm{HH}_{\bullet}\left(X, \mathcal{E}^{\bullet}\right)$	$\mathrm{HH}^{\bullet}\left(X, \mathcal{E}^{\bullet}\right)$
DBim	A^{\bullet}	$A^{\bullet} \cdot M_{A}^{\bullet}$	$\mathrm{HH}_{\bullet}\left(A^{\bullet}, M^{\bullet}\right)$	$\mathrm{HH}^{\bullet}\left(A^{\bullet}, M^{\bullet}\right)$

Dimension

The dimension of an object can be defined to be the trace of the identity.

$$
\begin{aligned}
& \operatorname{Dim}^{\circlearrowright}(V):=\operatorname{Tr}^{\circlearrowright}\left(\operatorname{Id}_{V}\right)= \\
& \operatorname{Dim} \searrow(V):=\operatorname{Tr} \searrow\left(\operatorname{Id}_{v}\right)=2-\operatorname{Hom}\left(\operatorname{Id}_{V}, \operatorname{Id}_{v}\right)=\left\{\begin{array}{c}
\\
\theta \cdot \\
\\
\\
\\
\end{array}\right\}
\end{aligned}
$$

- $\operatorname{Dim} \searrow(V)$ is a commutative monoid
- $\operatorname{Dim} \downarrow(V)$ acts on $\operatorname{Dim}^{\circlearrowright}(V)$

$$
\operatorname{Dim}^{\searrow}(V) \rightarrow 2-\operatorname{Hom}\left(\operatorname{Dim}^{\circlearrowright}(V), \operatorname{Dim}^{\circlearrowright}(V)\right)
$$

Examples of dimensions in monoidal bicategories

object, $V \quad \operatorname{Dim}^{\circlearrowright}(V) \quad \operatorname{Dim}^{\searrow}(V)$

Span	X	X	$\{\star\}$
Bim	A	$A /[A, A]$	$Z(\mathrm{Z})$
\mathcal{V}-Mod	\mathcal{C}	$\int^{c} \mathcal{C}(c, c)$	\mathcal{V}-NAT $\left(\mathrm{Id}_{\mathcal{C}}, \mathrm{Id}_{\mathcal{C}}\right)$
2-Tang	X	$\mathrm{HH}_{\bullet}(X)$	$\mathrm{HH}^{\bullet}(X)$
Var			
DBim	A^{\bullet}	$\mathrm{HH}_{\bullet}\left(A^{\bullet}\right)$	$\mathrm{HH}^{\bullet}\left(A^{\bullet}\right)$

