Traces in low-dimensional algebra

Simon Willerton
University of Sheffield

2-tangles: objects

Objects
(0-cells)

n points on a fixed
line in \mathbb{R}^{2}
" \otimes "-product
unit

2-tangles: morphisms

Two
"products"

tangles in \mathbb{R}^{3} from m points to n points
\otimes inherited from
0 -cells

- composition

Note:

$$
1-\operatorname{Hom}(0,0)=\{\text { links }\}=\{
$$

Here both \otimes and \circ are the same.

2-tangles: 2-morphisms

2-morphisms
(2-cells)

cobordisms in \mathbb{R}^{4} from tangle T_{1} to tangle T_{2}
three
"products"

\otimes inherited from 0-cells

- composition from

1-cells
\circ_{2} composition

Bimodules: objects

objects
(0-cells)

unital associative algebras $/ \mathbb{C}$
" \otimes " product $\quad A \otimes_{\mathbb{C}} B$
unit
\mathbb{C}

Bimodules: morphisms

$$
\begin{aligned}
& \otimes:{ }_{B} M_{A} \otimes_{\mathbb{C} D} N_{C} \\
& \quad=B \otimes D\left(M \otimes_{\mathbb{C}} N\right)_{A \otimes C}
\end{aligned}
$$

○: ${ }_{C} P_{B} \otimes_{B}{ }_{B} M_{A}$

Note:

- o-unit: ${ }_{A} A_{A}$

$$
\left[M_{A} B_{A} \otimes_{A} A_{A} \cong{ }_{M} B_{A}\right]
$$

- $1-\operatorname{Hom}(\mathbb{C}, \mathbb{C})=\{$ vector spaces $\}=\{$ V, $\}$

Bimodules: 2-morphisms

2-morphisms
(2-cells)
$2-\operatorname{Hom}_{\operatorname{Bim}}(A, B):=$ bimod maps ${ }_{B} M_{A} \xrightarrow{\varphi}{ }_{B} N_{A}$

three 'products'

0

Remarks

- This gives an enlargement of the usual category of algebras and algebra morphisms: $(f: A \rightarrow B) \mapsto{ }_{B} B_{f A}$
- We have monoidal 2-categories

$$
\text { Bim: }=\{\text { algebras, bimodules, bimodule maps }\}
$$

Cat:=\{categories, functors, natural transformations\}
There is a 2 -functor $\mathrm{Bim} \rightarrow$ Cat

$$
\begin{aligned}
A & \mapsto \operatorname{Rep}(A) \\
{ }_{B} M_{A} & \mapsto\left({ }_{B} M_{A} \otimes-: \operatorname{Rep}(A) \rightarrow \operatorname{Rep}(B)\right) \\
\varphi & \mapsto \text { 'obvious' natural transformation }
\end{aligned}
$$

Bim is the sensible place in which to do Morita theory.

- Extended TQFTs are often thought of as 2-functors to Cat but frequently factor through Bim.

A derived version DBim

Even more interesting is DBim
objects (graded) algebras
morphisms complexes of (graded) bimodules
2-morphisms morphisms of complexes with quasi-isomorphisms inverted

$$
2-\operatorname{Hom}_{\mathrm{DBim}}\left({ }_{B} M_{A},{ }_{B} N_{A}\right) \cong \operatorname{Ext}^{\bullet}\left({ }_{B} M_{A},{ }_{B} N_{A}\right)
$$

Duals in a monoidal (2-)category

In $(\mathcal{C}, \otimes, \mathbf{1})$, an object V^{*} is left-dual to V if there exist morphisms

such that

If V is also left dual to V^{*} then V and V^{*} are bidual.
[$($ Vect, $\otimes, \mathbb{C})$ If V is fin dim then $\operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C})$ is bidual to V.]
2-Tang Every object is self bidual.
$\operatorname{Bim} A$ is bidual to $A^{\circ p}$ via ${ }_{C} A_{A \circ \rho} \otimes A$ and $A \otimes A$ op $A_{\mathbb{C}}$
DBim Similar

The round trace in a monoidal (2-)category

 If V has a bidual and $V \leftleftarrows V$ define the round trace

$$
\begin{aligned}
& {\left[\text { Vect } \operatorname{Tr}^{\cup}(f)=(-\times \operatorname{Tr}(f)): \mathbb{C} \rightarrow \mathbb{C}\right]} \\
& \text { 2-Tang } \operatorname{Tr}^{\cup}(
\end{aligned}
$$

$$
\operatorname{Bim} \operatorname{Tr}^{\cup}\left({ }_{A} M_{A}\right)={ }_{A} A_{A} \otimes A \otimes A \text { A甲 } A M_{A} \cong M /\{a m=m a\}
$$

$\operatorname{DBim} \operatorname{Tr}^{\cup}\left({ }_{A} M_{A}\right)={ }_{A} A_{A} \otimes_{A \otimes A \text { OP } A}^{L} M_{A} \cong H_{0}\left(A, A_{A}\right)$

Motivation/Application: Khovanov homology

Jones:

$\{$ links $\}$	$\xrightarrow{\text { Jones }} \mathbb{Z}\left[q^{ \pm 1}\right]$
\longmapsto	$q^{-9}+q^{-5}+q^{-2}+1$

Khovanov:
$\{$ links $\} \xrightarrow{\mathrm{KH}}\{$ bigraded vector sps $\} \xrightarrow{\chi} \mathbb{Z}\left[\boldsymbol{q}^{ \pm 1}\right]$

$$
\bigoplus_{i, j} V^{i, j} \mapsto \sum_{i, j}(-1)^{i} q^{j} \operatorname{dim} V^{i, j}
$$

Functoriality of Khovanov homology:
(cobordism $\left.C: K \leadsto K^{\prime}\right) \mapsto\left(\right.$ linear map $\left.\mathrm{KH}(C): \mathrm{KH}(K) \rightarrow \mathrm{KH}\left(K^{\prime}\right)\right)$

Motivation/Application: Khovanov homology (ctd)

 Rouquier:$$
\begin{gathered}
\left\{A_{n}\right\}_{n \in \mathbb{N}} \quad \text { algebras } A_{0}=\mathbb{C} \\
n, n \text {-braid } \quad \beta \mapsto A_{n} M(\beta)_{A_{n}} \quad \text { complex of bimods } \\
M\left(\beta_{2} \circ \beta_{1}\right) \cong M\left(\beta_{2}\right) \otimes_{A_{n}} M\left(\beta_{1}\right) \\
\widetilde{\mathrm{KH}}\left(\underset{\mathrm{HH}}{ }\left(A_{n}, M(\backsim)\right)\right.
\end{gathered}
$$

This 'suggests' that Khovanov homology extends to a monoidal 2-functor

$$
\begin{aligned}
\text { 2-Tang } & \longrightarrow \text { DBim } \\
n & A_{n}
\end{aligned}
$$

$$
m, n \text {-tangle } \longmapsto \text { cplx of graded } A_{n}-A_{m} \text {-bimods }
$$

$$
\text { [link } \longmapsto \text { cplx of graded vector sps } \mapsto \mathrm{KH}(\text { link }) \quad \text {] }
$$

tangle cobordism \longmapsto morphism of complexes

2-characters of finite groups

Finite group G acting on V a vector space: $V \xrightarrow{\rho(g)} V$

$$
\operatorname{ch}_{\rho}(g):=\operatorname{Tr}(\rho(g)) \in \mathbb{C} ; \quad \operatorname{ch}_{\rho}(g)=\operatorname{ch}_{\rho}\left(h g h^{-1}\right)
$$

Finite group G acting on ν a semisimple linear category: $\mathcal{V} \xrightarrow{\alpha(g)} \nu$

$$
\mathrm{Ch}_{\alpha}(g):=\operatorname{Nat}\left(\operatorname{Id}{ }_{v}, \alpha(g)\right) \in \operatorname{Vect} ; \quad \mathrm{Ch}_{\alpha}(g) \xrightarrow{\simeq} \mathrm{Ch}_{\alpha}\left(h g h^{-1}\right)
$$

[Gives a representation of the Drinfeld double of G.]
$\alpha(g)$ is a 1-endomorphism in the 2-category
\{linear categories, linear functors, natural transformations\}
This leads us to another notion of trace...

The diagonal trace in a 2-category

This can be defined in a 2-category without monoidal structure.
If V is an object of a 2-category and $V \stackrel{f}{\leftarrow} V$ define the diagonal trace:

$$
\operatorname{Tr} \searrow(f):=2-\operatorname{Hom}\left(\operatorname{Id}_{v}, f\right)=\left\{\begin{array}{|ccc}
& \theta\rfloor^{f} & \\
& & v
\end{array}\right\}
$$

$2-\operatorname{Tang} \operatorname{Tr} \searrow(\square)=\{\square$
$\operatorname{Bim} \operatorname{Tr} \searrow\left({ }_{A} M_{A}\right)=\operatorname{Hom}\left({ }_{A} A_{A}, A_{A} M_{A} \cong\{m \in M \mid a m=m a \forall a \in A\}\right.$
$\operatorname{DBim} \operatorname{Tr} \searrow\left({ }_{A} M_{A}\right)=\operatorname{Ext}^{\bullet}\left({ }_{A} A_{A},{ }_{A} M_{A}\right) \cong H^{\bullet}\left(A,{ }_{A} M_{A}\right)$

