## Magnitude of Metric Spaces II

Tom Leinster & Simon Willerton Universities of Glasgow & Sheffield

Integral Geometry and Valuation Theory, CRM Barcelona 8th September 2010

► Suppose *A* is a finite metric space.

- Suppose A is a finite metric space.
- A weighting is a function  $w: A \to \mathbb{R}$  such that

$$\sum_{b\in \mathcal{A}}e^{-d(a,b)}w_b=1$$
 for all  $a\in \mathcal{A}.$ 

- Suppose A is a finite metric space.
- A weighting is a function  $w: A \to \mathbb{R}$  such that

$$\sum_{b\in \mathcal{A}}e^{-d(a,b)}w_b=1$$
 for all  $a\in \mathcal{A}.$ 

If a weighting exists then the magnitude is given by

$$|A| := \sum_{a} w_{a}.$$

- Suppose A is a finite metric space.
- A weighting is a function  $w: A \to \mathbb{R}$  such that

$$\sum_{b\in \mathcal{A}}e^{-d(a,b)}w_b=1$$
 for all  $a\in \mathcal{A}.$ 

If a weighting exists then the magnitude is given by

$$|A| := \sum_{a} w_{a}.$$

- Suppose A is a finite metric space.
- A weighting is a function  $w: A \to \mathbb{R}$  such that

$$\sum_{b\in A}e^{-d(a,b)}w_b=1$$
 for all  $a\in A.$ 

If a weighting exists then the magnitude is given by

$$|A| := \sum_{a} w_{a}.$$

Think: Each  $a \in A$ 

is an organism;

- Suppose A is a finite metric space.
- A weighting is a function  $w: A \to \mathbb{R}$  such that

$$\sum_{b\in A}e^{-d(a,b)}w_b=1$$
 for all  $a\in A.$ 

If a weighting exists then the magnitude is given by

$$|A| := \sum_{a} w_{a}.$$

- is an organism;
- wishes to be at temperature 1;

- Suppose A is a finite metric space.
- A weighting is a function  $w: A \to \mathbb{R}$  such that

$$\sum_{b\in A}e^{-d(a,b)}w_b=1$$
 for all  $a\in A.$ 

If a weighting exists then the magnitude is given by

$$|A| := \sum_{a} w_{a}.$$

- is an organism;
- wishes to be at temperature 1;
- generates w<sub>a</sub> amount of heat;

- Suppose A is a finite metric space.
- A weighting is a function  $w: A \to \mathbb{R}$  such that

$$\sum_{b\in \mathcal{A}}e^{-d(a,b)}w_b=1$$
 for all  $a\in \mathcal{A}.$ 

If a weighting exists then the magnitude is given by

$$|A| := \sum_{a} w_{a}.$$

- is an organism;
- wishes to be at temperature 1;
- generates w<sub>a</sub> amount of heat;
- experiences heat from *b* as  $e^{-d(a,b)}w_b$ .

- Suppose A is a finite metric space.
- A weighting is a function  $w: A \to \mathbb{R}$  such that

$$\sum_{b\in \mathcal{A}}e^{-d(a,b)}w_b=1$$
 for all  $a\in \mathcal{A}.$ 

If a weighting exists then the magnitude is given by

$$|A| := \sum_{a} w_{a}.$$

- is an organism;
- wishes to be at temperature 1;
- generates w<sub>a</sub> amount of heat;
- experiences heat from *b* as  $e^{-d(a,b)}w_b$ .

| • | ٠ | • | • | • | ٠ |
|---|---|---|---|---|---|
| • | • | • | • | • | ٠ |
| • | • | ٠ | • | • | • |
| • | • | ٠ | • | • | • |
| • | • | ٠ | • | ٠ | • |
| • | • | • | • | • | • |

- Suppose A is a finite metric space.
- A weighting is a function  $w: A \to \mathbb{R}$  such that

$$\sum_{b\in \mathcal{A}}e^{-d(a,b)}w_b=1$$
 for all  $a\in \mathcal{A}.$ 

If a weighting exists then the magnitude is given by

$$|A| := \sum_{a} w_{a}.$$

- is an organism;
- wishes to be at temperature 1;
- generates w<sub>a</sub> amount of heat;
- experiences heat from *b* as  $e^{-d(a,b)}w_b$ .



- Suppose A is a finite metric space.
- A weighting is a function  $w: A \to \mathbb{R}$  such that

$$\sum_{b\in A}e^{-d(a,b)}w_b=1$$
 for all  $a\in A.$ 

If a weighting exists then the magnitude is given by

$$|A| := \sum_{a} w_{a}.$$

- is an organism;
- wishes to be at temperature 1;
- generates w<sub>a</sub> amount of heat;
- experiences heat from *b* as  $e^{-d(a,b)}w_b$ .



If A is an infinite metric space define

$$|A| := \sup \Big\{ \Big| \ddot{A} \Big| \ : \ \ddot{A} \subset A \text{ finite} \Big\}$$

If A is an infinite metric space define

$$|A| := \sup \Big\{ \Big| \ddot{A} \Big| \ : \ \ddot{A} \subset A \text{ finite} \Big\}$$





If A is an infinite metric space define

$$|A| := \sup \left\{ \left| \ddot{A} \right| : \ \ddot{A} \subset A \text{ finite} 
ight\}$$

For example



Theorem (Leinster *et al.*): If  $\ddot{A} \subset \mathbb{R}^m$  is finite then  $|\ddot{A}|$  exists.

If A is an infinite metric space define

$$|A| := \sup \left\{ \left| \ddot{A} \right| : \ \ddot{A} \subset A \text{ finite} 
ight\}$$

For example



Theorem (Leinster *et al.*): If  $\ddot{A} \subset \mathbb{R}^m$  is finite then  $|\ddot{A}|$  exists.

Theorem (Meckes): Suppose  $A \subset \mathbb{R}^m$ . If  $\{\ddot{A}_i\}$  is a sequence of finite subsets of A with  $\ddot{A}_i \to A$  then  $|A_i| \to |A|$ .

Lemma (Speyer): Suppose A is a homogeneous metric space. There is a constant weighting w: for any fixed  $a_0 \in A$ 

$$w := rac{1}{\sum\limits_{a \in A} e^{-d(a_0, a)}}$$
 so  $|A| = rac{\#A}{\sum\limits_{a \in A} e^{-d(a_0, a)}}$ 

Lemma (Speyer): Suppose A is a homogeneous metric space. There is a constant weighting w: for any fixed  $a_0 \in A$ 

$$w := \frac{1}{\sum\limits_{a \in A} e^{-d(a_0, a)}}$$
 so  $|A| = \frac{\#A}{\sum\limits_{a \in A} e^{-d(a_0, a)}}$ 

$$|C_{\ell}^{n}| = \frac{n}{\sum\limits_{a \in C_{\ell}^{n}} e^{-d(a_{0},a)}}$$



Lemma (Speyer): Suppose A is a homogeneous metric space. There is a constant weighting w: for any fixed  $a_0 \in A$ 

$$w := rac{1}{\sum\limits_{a \in A} e^{-d(a_0, a)}}$$
 so  $|A| = rac{\#A}{\sum\limits_{a \in A} e^{-d(a_0, a)}}$ 

$$|C_{\ell}^{n}| = \frac{n}{\sum\limits_{a \in C_{\ell}^{n}} e^{-d(a_{0},a)}}$$

$$C_{\ell}^{n} := \frac{n}{\text{points}}$$

Lemma (Speyer): Suppose A is a homogeneous metric space. There is a constant weighting w: for any fixed  $a_0 \in A$ 

$$w := \frac{1}{\sum_{a \in A} e^{-d(a_0, a)}}$$
 so  $|A| = \frac{\#A}{\sum_{a \in A} e^{-d(a_0, a)}}$ 

$$|C_{\ell}^{n}| = \frac{n}{\sum\limits_{a \in C_{\ell}^{n}} e^{-d(a_{0},a)}}$$

$$C_{\ell}^{n} :=$$
 $n$ 
points

Lemma (Speyer): Suppose A is a homogeneous metric space. There is a constant weighting w: for any fixed  $a_0 \in A$ 

$$w := \frac{1}{\sum\limits_{a \in A} e^{-d(a_0, a)}}$$
 so  $|A| = \frac{\#A}{\sum\limits_{a \in A} e^{-d(a_0, a)}}$ 

$$|C_{\ell}^{n}| \to \frac{\ell/2}{\int_{0}^{1} e^{-\ell d(s)} \mathrm{d}s} \quad [n \to \infty] \qquad C_{\ell}^{n} := \begin{pmatrix} n \\ \text{points} \end{pmatrix}$$

Lemma (Speyer): Suppose A is a homogeneous metric space. There is a constant weighting w: for any fixed  $a_0 \in A$ 

$$w := rac{1}{\sum\limits_{a \in A} e^{-d(a_0, a)}}$$
 so  $|A| = rac{\#A}{\sum\limits_{a \in A} e^{-d(a_0, a)}}$ 

For example

$$|C_{\ell}^{n}| \rightarrow \frac{\ell/2}{\int_{0}^{1} e^{-\ell d(s)} \mathrm{d}s} \quad [n \rightarrow \infty] \qquad C_{\ell}^{n} \coloneqq \begin{pmatrix} n \\ \text{points} \end{pmatrix}$$

So  $|S_{\ell}^1| = \frac{\ell/2}{\int_0^1 e^{-\ell d(s)} \mathrm{d}s}$ 

Lemma (Speyer): Suppose A is a homogeneous metric space. There is a constant weighting w: for any fixed  $a_0 \in A$ 

$$w := \frac{1}{\sum\limits_{a \in A} e^{-d(a_0, a)}}$$
 so  $|A| = \frac{\#A}{\sum\limits_{a \in A} e^{-d(a_0, a)}}$ 

$$|C_{\ell}^{n}| \to \frac{\ell/2}{\int_{0}^{1} e^{-\ell d(s)} \mathrm{d}s} \quad [n \to \infty] \qquad C_{\ell}^{n} := \begin{pmatrix} n \\ \text{points} \end{pmatrix}$$

So 
$$|S_{\ell}^{1}| = \frac{\ell/2}{\int_{0}^{1} e^{-\ell d(s)} \mathrm{d}s}$$



Lemma (Speyer): Suppose A is a homogeneous metric space. There is a constant weighting w: for any fixed  $a_0 \in A$ 

$$w := rac{1}{\sum\limits_{a \in A} e^{-d(a_{0},a)}}$$
 so  $|A| = rac{\#A}{\sum\limits_{a \in A} e^{-d(a_{0},a)}}$ 

$$|C_{\ell}^{n}| \to \frac{\ell/2}{\int_{0}^{1} e^{-\ell d(s)} \mathrm{d}s} \quad [n \to \infty] \qquad C_{\ell}^{n} := \begin{pmatrix} n \\ \text{points} \end{pmatrix}$$

So 
$$\left|S_{\ell}^{1}\right| = \frac{\ell/2}{\int_{0}^{1} e^{-\ell d(s)} \mathrm{d}s}$$
  
~  $\ell/2 + O(\ell^{-2}) \quad [\ell \to \infty]$ 



We don't know how to calculate the magnitude of subsets of  $\mathbb{R}^2$ .

We don't know how to calculate the magnitude of subsets of  $\mathbb{R}^2$ . Approximate with a finite subset ...



We don't know how to calculate the magnitude of subsets of  $\mathbb{R}^2$ . Approximate with a finite subset and get maple to calculate a weighting.



We don't know how to calculate the magnitude of subsets of  $\mathbb{R}^2$ . Approximate with a finite subset and get maple to calculate a weighting.



Let  $\mathcal{L}$  be a 'small' lattice in  $\mathbb{R}^m$ .

| ٠ | ٠ | • | • | · | · | ٠ | · | ٠ | • | ٠ | ٠ | · | · | ٠ | ٠ | ٠ | • | • | • | · | · | ٠ | · | · | ٠ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| • | • | · | · | · | · | · | ٠ | · | ٠ | • | • | · | · | · | · | · | · | · | · | · | · | · | ٠ | · | • |
| ٠ | • | · | · | · | · | ٠ | ٠ | ٠ | · | • | · | · | · | ٠ | ٠ | ٠ | · | · | · | · | · | ٠ | ٠ | ٠ | • |
| · | ٠ | · | · | · | · | · | · | · | · | • | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |
| · | · | · | · | · | · | · | ٠ | ٠ | · | · | · | · | · | · | · | ٠ | · | · | · | · | · | · | ٠ | · | · |
| · | • | • | · | · | · | · | ٠ | · | · | • | • | · | · | · | · | · | · | • | · | · | · | · | ٠ | · | • |
| · | ٠ | • | • | · | · | · | ٠ | · | ٠ | • | • | · | · | · | · | · | • | • | • | · | · | · | ٠ | · | • |
| · | ٠ | • | ÷ | ÷ | · | · | · | · | ٠ | ٠ | ٠ | ÷ | · | · | · | · | ÷ | • | ÷ | ÷ | · | · | · | · | • |
| • | ٠ | • | • | · | · | · | · | • | • | • | • | · | · | · | · | • | • | • | • | · | · | · | · | · | • |
| · | • | • | · | · | · | · | · | • | · | • | • | · | · | · | · | • | · | • | · | · | · | · | · | · | • |
| · | · | · | · | · | · | ٠ | · | · | · | · | · | · | · | ٠ | ٠ | · | · | · | · | · | · | ٠ | · | · | · |
| · | • | · | · | · | · | · | · | · | · | • | • | · | · | · | · | · | · | · | · | · | · | · | · | · | · |
| · | • | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · | · |
| • | • | • | • | · | · | · | · | • | • | • | • | · | · | · | · | • | • | • | • | · | · | · | · | · | • |
| • | • | • | • | · | · | · | · | • | • | • | • | · | · | · | · | • | • | • | • | · | · | · | · | · | • |
| • | • | • | • | • | • | • | · | • | • | • | • | • | • | • | · | • | • | • | • | • | • | • | · | • | • |
| • |   | • | • | • | · | · | · | • | • | • | • | • | · | · | · | • | • | • | • | • | · | · | • | • | • |
| · | • | • | • | • | · | · | · | · | • | • | • | • | · | · | · | · | • | • | • | • | · | · | · | · | • |
| • | • | • | · | · | · | · | • | • | · | • | • | · | · | · | · | • | · | • | · | · | · | · | • | · | • |
| · | • | • | • | • | • | • | · | · | · | • | · | • | • | • | • | · | · | • | • | • | • | • | · | • | · |
| • | · | • | · | · | · | • | • | • | · | • | • | · | · | • | • | • | · | • | · | · | · | • | • | · | • |
| · | • | • | • | · | · | · | · | · | · |   | • | · | · | • | • | · | • | • | • | · | · | • | · | · | • |
| • | • | • | • | · | · | · | • | • | • |   |   | · | · | · | · | • | • | • | • | · | · | · | • | • | • |
| • |   |   | • | • | • | • | • | • |   |   |   | • | • | • | • | • | • |   | • | • | • | • | · | • |   |
| ÷ | 1 | 1 | 1 | ÷ | ÷ | ÷ | ÷ | ÷ | 1 | ÷ | ÷ | ÷ | ÷ | : | : | ÷ | 1 | 1 | 1 | ÷ | ÷ | : | ÷ | 1 | ÷ |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

| · | · | ٠ | • | · | · | · | · | · | ٠ | ٠ | ٠ | ٠ | · | · | · | • | ٠ | ٠ | ٠ | • | · | · | · | · | • |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| · | · | · | · | · | · | · | ٠ | · | · | ٠ | ٠ | ٠ | · | ٠ | · | ٠ | · | ٠ | ٠ | · | · | ٠ | · | · | • |
| · | · | · | · | · | · | · | ٠ | · | · | ٠ | ٠ | · | ٠ | ٠ | ٠ | ٠ | · | ٠ | ٠ | · | ٠ | ٠ | ٠ | · | • |
| ٠ | · | · | · | · | ٠ | ٠ | ٠ | ٠ | · | · | · | ٠ | ٠ | ٠ | ٠ | ٠ | · | · | · | · | ٠ | ٠ | ٠ | ٠ | · |
| · | · | · | · | · | · | · | ٠ | · | · | · | · | · | ٠ | ٠ | · | ٠ | · | · | · | · | ٠ | ٠ | · | · | · |
| · | · | • | · | · | · | · | ٠ | · | · | ٠ | ٠ | · | ٠ | ٠ | · | · | · | ٠ | ٠ | · | · | ٠ | · | · | • |
| · | · | • | · | · | · | · | · | · | · | • | • | · | · | · | · | · | · | • | • | · | · | · | · | · | • |
| · | • | • | • | · | · | · | • | · | • | ٠ | • | • | · | · | · | • | • | ٠ | • | • | • | · | · | • | • |
| · | • | • | • | · | · | · | · | · | • | ٠ | • | • | · | · | · | • | • | ٠ | • | • | · | · | · | • | • |
| · | · | • | · | · | · | · | · | · | · | • | • | · | · | · | · | · | · | • | • | • | · | · | · | · | • |
| · | · | · | · | · | · | ٠ | · | · | · | • | · | ٠ | ٠ | · | ٠ | · | · | • | · | · | · | · | ٠ | · | • |
| · | · | · | · | · | · | · | ٠ | · | · | • | · | · | · | ٠ | · | ٠ | · | • | · | · | · | ٠ | · | · | • |
| · | · | · | · | · | · | · | ٠ | · | · | • | · | · | · | ٠ | · | ٠ | · | • | · | · | ٠ | ٠ | · | · | • |
| · | · | • | · | · | · | · | ٠ | · | · | • | · | · | · | ٠ | · | • | · | • | · | · | · | ٠ | · | · | • |
| · | • | • | • | · | · | · | · | · | • | • | • | · | · | · | · | · | • | • | • | • | · | · | · | • | • |
| • | • | • | • | · | · | · | · | • | • | • | • | • | · | · | · | · | • | • | • | • | · | · | · | • | • |
| • | • | • | • | · | · | · | • | • | • | • | • | • | · | • | · | • | • | • | • | • | • | • | · | • |   |
| · | • | • | · | · | · | · | · | · | • | • | • | · | · | · | · | · | • | • | • | • | · | · | · | · | • |
| · | • | • | · | · | · | · | · | · | · | • | · | · | · | · | · | · | · | • | · | • | · | · | · | · | • |
| · | · | • | · | · | · | · | ٠ | · | · | • | · | · | · | ٠ | · | · | · | • | · | · | · | ٠ | · | · | • |
| · | · | • | · | · | · | · | ٠ | · | • | • | • | · | · | ٠ | · | · | • | • | • | · | ٠ | ٠ | · | • | • |
| · | • | • | • | · | · | · | · | · | • | • | • | · | · | · | · | · | • | • | • | · | · | · | · | • | • |
| · | • | • | • | · | · | · | · | · | • | • | • | • | · | · | · | • | • | • | • | · | · | · | · | • | • |
| • | • | • | • | • | • | • | · | • | • | • | • | • | • | · | • | • | • | • | • | • | · | · | • | • | • |
| • | • | • | • | • | • | • | · | • | • | • | • | • | • | · | • | · | • | • | • | • | · | · | • | • | • |
|   |   |   |   |   |   | • |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

$$w = \frac{1}{\sum_{a \in \mathcal{L}} e^{-d(0,a)}}$$

| ٠ | ٠  | •  | • | ٠ | ٠ | ٠  | ٠  | ٠ | •  | •  | • | ٠ | ٠ | ٠ | ٠  | ٠ | •  | •  | • | ٠ | ٠ | ٠  | ٠  | ٠ | • |
|---|----|----|---|---|---|----|----|---|----|----|---|---|---|---|----|---|----|----|---|---|---|----|----|---|---|
|   |    | •  |   |   |   |    |    |   | •  | •  |   |   |   |   |    |   | •  | •  |   |   |   | •  |    |   | • |
|   |    |    |   |   |   |    |    |   |    |    |   |   |   |   |    |   |    |    |   |   |   |    |    |   |   |
|   |    |    |   |   |   |    |    |   |    |    |   |   |   |   |    |   |    |    |   |   |   |    | •  |   |   |
|   |    |    |   |   |   |    |    |   |    |    |   |   |   |   |    |   |    |    |   |   |   |    |    |   |   |
|   |    |    |   |   |   |    |    |   |    |    |   |   |   |   |    |   |    |    |   |   |   |    |    |   |   |
|   |    |    |   |   |   |    |    |   |    |    |   |   |   |   |    |   |    |    |   |   |   |    |    |   |   |
|   |    |    |   |   |   |    |    |   |    |    |   |   |   |   |    |   |    |    |   |   |   |    |    |   |   |
|   |    |    |   |   |   |    |    |   |    |    |   |   |   |   |    |   |    |    |   |   |   |    |    |   |   |
|   |    |    |   |   |   |    |    |   |    |    |   |   |   |   |    |   |    |    |   |   |   |    |    |   |   |
|   |    |    |   |   |   |    |    |   |    |    |   |   |   |   |    |   |    |    |   |   |   |    |    |   |   |
|   |    |    |   |   |   |    |    |   |    |    |   |   |   |   |    |   |    |    |   |   |   |    |    |   |   |
|   |    |    |   |   |   |    |    |   |    |    |   |   |   |   |    |   |    |    |   |   |   |    |    |   |   |
|   |    |    |   |   |   |    |    |   |    |    |   |   |   |   |    |   |    |    |   |   |   |    |    |   |   |
|   |    |    |   |   |   |    |    |   |    |    |   |   |   |   |    |   |    |    |   |   |   |    |    |   |   |
|   |    |    |   |   |   |    |    |   |    |    |   |   |   |   |    |   |    |    |   |   |   |    |    |   |   |
|   |    |    |   |   |   |    |    |   |    |    |   |   |   |   |    |   |    |    |   |   |   |    |    |   |   |
|   | ÷  |    |   | ÷ | ÷ |    |    |   |    |    |   | ÷ | ÷ | ÷ |    | ÷ |    |    |   | ÷ | ÷ |    | ÷  |   |   |
|   | ÷  |    | ÷ | ÷ | ÷ | ÷  | ÷  |   |    |    | ÷ | ÷ | ÷ | ÷ | ÷  | ÷ |    |    | ÷ | ÷ | ÷ | ÷  | ÷  |   |   |
|   | ÷  |    | ÷ | ÷ | ÷ | ÷  | ÷  | ÷ |    |    | ÷ | ÷ | ÷ | ÷ | ÷  | ÷ |    |    | ÷ | ÷ | ÷ | ÷  | ÷  | ÷ |   |
|   | ÷  |    | ÷ | ÷ | ÷ |    |    |   | ÷  |    | ÷ | ÷ | ÷ | ÷ |    | ÷ | ÷  |    | ÷ | ÷ | ÷ | ÷  | ÷  |   | ÷ |
| ÷ | ÷  | ÷  | ÷ | ÷ | ÷ |    |    |   | ÷  | ÷  | ÷ | ÷ | ÷ | ÷ |    | ÷ | ÷  | ÷  | ÷ | ÷ | ÷ |    | ÷  |   | ÷ |
| 2 | ÷  | 1  | 2 | ÷ | ÷ |    |    |   | 2  | 1  | 2 | ÷ | ÷ | ÷ |    | ÷ | 2  | 1  | 2 | ÷ | ÷ |    | ÷  |   | 1 |
| 2 | 2  | 1  | 1 | 1 | ÷ |    | 2  | 2 | 2  | 1  | 1 | 1 | ÷ | ÷ | 2  | ÷ | 2  | 1  | 1 | 1 | ÷ |    | ÷  | 2 | 2 |
| 2 | ÷. | 2  | 2 | 1 | 1 |    |    |   | 2  | 2  | 2 | 1 | 1 | 1 |    | 2 | 2  | 2  | 2 | 1 | 1 |    | ÷  |   | 2 |
| 1 | ÷  | Ĵ. | ÷ | ÷ | Ĵ | Ĩ. | Ĵ. | ÷ | Ĵ. | Ĵ. | ÷ | ÷ | Ĵ | Ĵ | Ĵ. | ÷ | Ĵ. | Ĵ. | ÷ | ÷ | Ĵ | Ĩ. | Ĵ. | ÷ | 1 |
|   |    |    |   |   |   |    |    |   |    |    |   |   |   |   |    |   |    |    |   |   |   |    |    |   |   |

$$w = \frac{\operatorname{vol} \Delta}{\sum\limits_{a \in \mathcal{L}} e^{-d(0,a)} \operatorname{vol} \Delta}$$

| •                   | •               | •                   | •                   | •                     | •                       | •                       | •                     | •                     | •                     | •                     | •                   | •                                       | ·        | •        | •                     | •                     | •                                       | •                 | •                     | •                     | •                       | ·                 | •                     | •                                     | •                     |
|---------------------|-----------------|---------------------|---------------------|-----------------------|-------------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------|-----------------------------------------|----------|----------|-----------------------|-----------------------|-----------------------------------------|-------------------|-----------------------|-----------------------|-------------------------|-------------------|-----------------------|---------------------------------------|-----------------------|
| ٠                   | •               | •                   | •                   | •                     | •                       | ٠                       | ٠                     | •                     | •                     | •                     | •                   | •                                       | ·        | ٠        | ٠                     | ٠                     | •                                       | •                 | •                     | •                     | •                       | ٠                 | ٠                     | •                                     | •                     |
| ٠                   | ٠               | •                   | •                   | ٠                     | ٠                       | ٠                       | ٠                     | ٠                     | ·                     | •                     | ·                   | ·                                       | ٠        | ٠        | ٠                     | ٠                     | ·                                       | •                 | •                     | ٠                     | ٠                       | ٠                 | ٠                     | ٠                                     | ·                     |
| ٠                   | ٠               | •                   | •                   | ٠                     | ٠                       | ٠                       | ٠                     | ٠                     | ٠                     | •                     | ٠                   | ٠                                       | ٠        | ٠        | ٠                     | ٠                     | ٠                                       | •                 | •                     | ٠                     | ٠                       | ٠                 | ٠                     | ٠                                     | ٠                     |
| ·                   | ·               | •                   | ·                   | ·                     | ·                       | ٠                       | ٠                     | ·                     | ·                     | •                     | ٠                   | ·                                       | ٠        | ٠        | ٠                     | ٠                     | ·                                       | ·                 | ·                     | ·                     | ·                       | ٠                 | ٠                     | ·                                     | ·                     |
| ·                   | ·               | •                   | ·                   | ·                     | ·                       | ·                       | ·                     | ·                     | •                     | •                     | •                   | ·                                       | ·        | ·        | ·                     | ·                     | •                                       | ·                 | ·                     | ·                     | ·                       | ·                 | ·                     | ·                                     | •                     |
| •                   |                 |                     | •                   |                       | •                       | •                       | •                     | •                     |                       |                       |                     |                                         | •        | •        | •                     |                       |                                         |                   | •                     |                       | •                       | •                 | •                     | •                                     |                       |
|                     |                 |                     |                     |                       |                         |                         | ·                     |                       |                       |                       | ÷                   |                                         |          |          | ·                     | ÷                     |                                         |                   |                       |                       |                         |                   | ·                     |                                       |                       |
|                     |                 |                     |                     |                       |                         |                         |                       |                       |                       |                       | ÷                   |                                         |          |          |                       |                       |                                         |                   |                       |                       |                         |                   |                       |                                       |                       |
|                     |                 |                     |                     |                       |                         |                         |                       |                       |                       |                       |                     |                                         |          |          |                       |                       |                                         |                   |                       |                       |                         |                   |                       |                                       |                       |
|                     |                 |                     |                     |                       |                         |                         |                       |                       |                       |                       |                     |                                         |          |          |                       |                       |                                         |                   |                       |                       |                         |                   |                       |                                       |                       |
|                     |                 |                     |                     |                       |                         |                         |                       |                       |                       |                       |                     |                                         |          |          |                       |                       |                                         |                   |                       |                       |                         |                   |                       |                                       |                       |
|                     |                 |                     |                     |                       |                         |                         |                       |                       |                       |                       |                     |                                         |          |          |                       |                       |                                         |                   |                       |                       |                         |                   |                       |                                       |                       |
|                     |                 |                     |                     |                       |                         |                         |                       |                       |                       |                       |                     |                                         |          |          |                       |                       |                                         |                   |                       |                       |                         |                   |                       |                                       |                       |
|                     |                 |                     |                     |                       |                         |                         |                       |                       |                       |                       |                     |                                         |          | ۱.       |                       |                       |                                         |                   |                       |                       |                         |                   |                       |                                       |                       |
| ÷                   | ÷               | :                   | ÷                   | ÷                     | :                       | :                       | :                     | ÷                     | ÷                     | :                     | :                   | •                                       | Ç        | ŀ        | :                     | :                     | ÷                                       | ÷                 | ÷                     | ÷                     | :                       | :                 | :                     | ÷                                     | ÷                     |
| :                   | ÷               | ÷                   | ÷                   | :                     | ÷                       | ÷                       | ÷                     | ÷                     | ÷                     | ÷                     | ÷                   |                                         | Ļ        | ŀ        | ÷                     | ÷                     | ÷                                       | ÷                 | ÷                     | ÷                     | ÷                       | :                 | ÷                     | ÷                                     | ÷                     |
| •                   | •               | •                   | •                   | •                     | :                       | :                       | :                     | :                     | :                     | :                     | :                   | •                                       | Ļ        |          | :                     | :                     | •                                       | •                 | •                     | :                     | :                       | •                 | :                     | :                                     | •                     |
|                     | •               | :                   | •                   | :                     |                         |                         |                       |                       |                       |                       | :                   | •                                       | <u>/</u> | ۲.<br>۲. |                       |                       | :                                       | •                 | :                     | :                     |                         |                   |                       | ·<br>·<br>·                           | :                     |
| •                   | •               |                     | •                   | •                     |                         |                         |                       |                       | :                     | :                     | •                   | •                                       | <u>/</u> |          |                       |                       | :                                       | •                 | •                     | •                     |                         |                   |                       |                                       |                       |
| •                   | •               |                     | •                   | •                     | •                       | •                       | •                     |                       | •                     | •                     | •                   | •                                       | <u>/</u> | <u>.</u> | ·<br>·<br>·           |                       | ·<br>·<br>·                             | •                 | •                     | •                     | •                       | ·<br>·<br>·       | •                     | ·<br>·<br>·                           | ·<br>·<br>·           |
| •                   | •               |                     | ••••••              | ·<br>·<br>·<br>·      | •                       | •                       | •                     | •                     | •                     | •                     | •                   | •                                       | <u>/</u> | <u>.</u> | •                     | ·<br>·<br>·           |                                         | •                 | •                     | •                     | •                       | •                 | •                     | ••••••                                | ••••••                |
| •                   | ••••••          |                     | •                   | ·<br>·<br>·<br>·      | ·<br>·<br>·<br>·        | ·<br>·<br>·<br>·        | ·<br>·<br>·<br>·      | ·<br>·<br>·<br>·      |                       |                       | • • • • • •         | ·<br>·<br>·<br>·                        | <u>/</u> | <u>.</u> | ·<br>·<br>·<br>·      | ·<br>·<br>·<br>·      | ••••••••••••••••••••••••••••••••••••••• | •                 | ••••••                | ·<br>·<br>·<br>·      | ·<br>·<br>·<br>·        |                   | ·<br>·<br>·<br>·      | ·<br>·<br>·<br>·                      | ·<br>·<br>·           |
| • • • • • • • •     | • • • • • • •   |                     | • • • • • • • •     | • • • • • • • •       | • • • • • • • •         | ·<br>·<br>·<br>·        | ·<br>·<br>·<br>·      | ·<br>·<br>·<br>·      | • • • • • • • •       | • • • • • • •         | • • • • • • • •     | •                                       | <u>/</u> | <b>N</b> | ·<br>·<br>·<br>·      | • • • • • • •         |                                         |                   |                       | • • • • • • • •       | • • • • • • • •         | ·<br>·<br>·<br>·  | ·<br>·<br>·<br>·      | · · · · · · · · · · · · · · · · · · · |                       |
| • • • • • • • • •   | • • • • • • • • | • • • • • • • • •   | • • • • • • • • •   | • • • • • • • • •     | • • • • • • • • •       | • • • • • • • •         | • • • • • • • •       | • • • • • • • • •     | • • • • • • • • •     | • • • • • • • • •     | • • • • • • • • •   | ••••••                                  | <u>/</u> | <u>.</u> | • • • • • • • •       | • • • • • • • •       | • • • • • • • • •                       | • • • • • • • •   | • • • • • • • • •     | • • • • • • • • •     | • • • • • • • • •       | • • • • • • • •   | • • • • • • • •       | • • • • • • • • •                     | • • • • • • • • •     |
| • • • • • • • • • • |                 | • • • • • • • • • • | • • • • • • • • • • | • • • • • • • • • •   | • • • • • • • • • •     | • • • • • • • • • •     | • • • • • • • • •     | • • • • • • • • • •   | • • • • • • • • • •   | • • • • • • • • •     | • • • • • • • • • • | ••••••••••••••••••••••••••••••••••••••• | <u> </u> | <u>.</u> | • • • • • • • • •     | • • • • • • • • •     | • • • • • • • • • •                     | • • • • • • • • • | • • • • • • • • • •   | • • • • • • • • • •   | • • • • • • • • • •     | • • • • • • • • • | • • • • • • • • •     | • • • • • • • • • •                   | • • • • • • • • • •   |
|                     |                 | • • • • • • • • • • |                     | • • • • • • • • • • • | • • • • • • • • • • • • | • • • • • • • • • • • • | • • • • • • • • • • • | • • • • • • • • • • • | • • • • • • • • • • • | • • • • • • • • • • • |                     | •<br>• • • • • • • • •                  | <u> </u> | <b>N</b> | • • • • • • • • • • • | • • • • • • • • • • • | • • • • • • • • • • •                   |                   | • • • • • • • • • • • | • • • • • • • • • • • | • • • • • • • • • • • • | • • • • • • • • • | • • • • • • • • • • • | • • • • • • • • • • •                 | • • • • • • • • • • • |

$$w = \frac{\operatorname{vol} \Delta}{\sum\limits_{a \in \mathcal{L}} e^{-d(0,a)} \operatorname{vol} \Delta} \simeq \frac{\operatorname{vol} \Delta}{\int\limits_{x \in \mathbb{R}^m} e^{-|x|} \operatorname{dvol}}$$

| •                   | • | •               | •                   | •           | •                           | •                          | •                            | •                   | •                 | •                 | •             | •                   | •                   | •                 | •                 | •                 | •               | •             | •               | •                   | •                   | •                 | •                 | • | •           |
|---------------------|---|-----------------|---------------------|-------------|-----------------------------|----------------------------|------------------------------|---------------------|-------------------|-------------------|---------------|---------------------|---------------------|-------------------|-------------------|-------------------|-----------------|---------------|-----------------|---------------------|---------------------|-------------------|-------------------|---|-------------|
| •                   | • | •               | •                   | ·           | •                           | ٠                          | ٠                            | ٠                   | •                 | •                 | •             | •                   | •                   | ٠                 | ٠                 | ٠                 | •               | •             | •               | •                   | •                   | ٠                 | ٠                 | · | •           |
| •                   | • | ·               | ·                   | ·           | ·                           | ·                          | ·                            | ·                   | ·                 | •                 | •             | ·                   | ·                   | ·                 | ·                 | ·                 | ·               | •             | •               | ·                   | ·                   | ·                 | ·                 | · | ·           |
| •                   | · | ·               | ·                   | ·           | ·                           | ·                          | ·                            | ·                   | ·                 | ·                 | ·             | ·                   | ·                   | ·                 | ·                 | ·                 | ·               | ·             | ·               | ·                   | ·                   | ·                 | ·                 | · | ·           |
| •                   | · | ·               | ·                   | ·           | ·                           | ·                          | ·                            | ·                   | ·                 | •                 | ·             | ·                   | ·                   | ·                 | ·                 | ·                 | ·               | •             | ·               | ·                   | ·                   | ·                 | ·                 | · | ·           |
| •                   | • | •               | ·                   | ·           | ·                           | ·                          | ·                            | ·                   | ·                 | •                 | ·             | ·                   | ·                   | ·                 | ·                 | ·                 | ·               | •             | •               | ·                   | ·                   | ·                 | ·                 | · | ·           |
| •                   | • | •               | •                   | ·           | ·                           | ·                          | ·                            | ·                   | •                 | •                 | •             | ·                   | ·                   | ·                 | ·                 | ·                 | •               | •             | •               | ·                   | ·                   | ·                 | ·                 | · | •           |
| •                   | • | •               | •                   | •           | •                           | ·                          | •                            | •                   | •                 | •                 | •             | •                   | •                   | ·                 | ·                 | •                 | •               | •             |                 | •                   | •                   | ·                 | ·                 | • | •           |
| •                   | • | •               | •                   | •           | ·                           | ·                          | •                            | •                   | •                 | •                 | •             | ·                   | ·                   | ·                 | ·                 | •                 | •               | •             | •               | ·                   | ·                   | ·                 | ·                 | • | •           |
| •                   | • | •               | •                   | •           | ·                           | ·                          | •                            | ·                   | •                 | •                 | •             | ·                   | ·                   | ·                 | ·                 | ·                 | •               | •             | •               | ·                   | ·                   | ·                 | ·                 | • | •           |
| •                   | • | •               | •                   | ·           | ·                           | ·                          | ·                            | ·                   | ·                 | •                 | •             | ·                   | ·                   | ·                 | ·                 | ·                 | ·               | •             | •               | ·                   | ·                   | ·                 | ·                 | · | ·           |
| •                   | • | •               | •                   | •           | ·                           | ·                          | •                            | ·                   | ·                 | •                 | •             | ·                   | ·                   | ·                 | •                 | ·                 | ·               | •             | •               | ·                   | ·                   | ·                 | •                 | • | ·           |
| •                   | • | •               | ·                   | •           | ·                           | •                          | ·                            | •                   | ·                 | •                 | •             | ·                   |                     | Ċ.                | •                 | •                 | ·               | •             | •               | ·                   | ·                   | ·                 | •                 | • | ·           |
| •                   | • | •               | •                   | •           | ·                           | ·                          | •                            | ·                   | ·                 | •                 | •             | •                   | Ĺ                   | 7.                | ·                 | ·                 | ·               | •             | •               | ·                   | ·                   | ·                 | ·                 | • | ·           |
|                     |   |                 |                     |             |                             |                            |                              |                     |                   |                   |               |                     |                     |                   |                   |                   |                 |               |                 |                     |                     |                   |                   |   | •           |
| •                   | • | •               | •                   | •           | ·                           | ·                          | •                            | ·                   | •                 | •                 |               |                     |                     |                   |                   |                   |                 |               |                 |                     |                     |                   |                   |   |             |
| :                   | • | •               | :                   | •           | ÷                           | :                          | ÷                            | ÷                   | ÷                 | ÷                 | ÷             | ÷                   | ÷                   | ÷                 | ·                 | ·                 | ·               | •             | •               | ·                   | ·                   | ÷                 | ·                 | · | ·           |
| •                   | • | •               | •                   | •           | :                           | :                          | ÷                            | :                   | :                 | •                 | •             | ÷                   |                     |                   | :                 | :                 | :               | •             | :               | :                   | :                   |                   | :                 | : | •           |
| •                   | • | •               | •                   | •           | :                           |                            | :                            |                     | •                 | •                 | :             |                     | •                   | :                 | :                 | :                 | :               | •             | :               | :                   | :                   | :                 | :                 | : | :           |
| •                   | • | •               | •                   | •           | •                           | •                          |                              | :                   | :                 | •                 | •             |                     | •                   | •                 | •                 | •                 | •               | •             | •               | •                   | •                   | •                 | •                 | • | •           |
| •                   | • | •               | •                   | •           | •                           |                            |                              |                     |                   | •                 | •             |                     | •                   | •                 |                   |                   | •               | •             | •               |                     |                     | •                 |                   |   | •           |
| •                   | • | •               | •                   | ·<br>·<br>· | ·<br>·<br>·<br>·            | ·<br>·<br>·<br>·           | ·<br>·<br>·<br>·             | ·<br>·<br>·         | ·<br>·<br>·       | •                 | •             | ·<br>·<br>·<br>·    | ·<br>·<br>·         | ·<br>·<br>·       |                   |                   |                 | •             |                 |                     |                     | ·<br>·<br>·       |                   |   | •           |
| • • • • • •         |   | •               | •                   | •           | ·<br>·<br>·<br>·            | ·<br>·<br>·<br>·           | ·<br>·<br>·<br>·             | ·<br>·<br>·<br>·    | ·<br>·<br>·       |                   | •             | ·<br>·<br>·<br>·    | •                   | ·<br>·<br>·<br>·  | ·<br>·<br>·<br>·  | ·<br>·<br>·<br>·  | •               | •             |                 | ·<br>·<br>·<br>·    | ·<br>·<br>·<br>·    | ·<br>·<br>·<br>·  | ·<br>·<br>·<br>·  |   | •           |
| • • • • • • •       |   | • • • • • • • • | • • • • • • • • •   | •           | • • • • • • • • • •         | ·<br>· · · · · · · · · · · | ·<br>·<br>·<br>·             | • • • • • • • • •   | • • • • • • •     | • • • • • • •     | • • • • • •   |                     | • • • • • • • •     | • • • • • • • •   |                   | • • • • • • •     | • • • • • •     | • • • • • • • |                 |                     |                     | • • • • • • • •   |                   |   | • • • • • • |
| • • • • • • • • • • |   |                 | • • • • • • • • • • |             | · · · · · · · · · · · · · · | • • • • • • • • • •        | ·<br>· · · · · · · · · · · · | • • • • • • • • • • | • • • • • • • • • | • • • • • • • • • | • • • • • • • | • • • • • • • • • • | • • • • • • • • • • | • • • • • • • • • | • • • • • • • • • | • • • • • • • • • | • • • • • • • • | • • • • • •   | • • • • • • • • | • • • • • • • • • • | • • • • • • • • • • | • • • • • • • • • | • • • • • • • • • |   |             |

$$w = \frac{\operatorname{vol} \Delta}{\sum\limits_{a \in \mathcal{L}} e^{-d(0,a)} \operatorname{vol} \Delta} \simeq \frac{\operatorname{vol} \Delta}{\int\limits_{x \in \mathbb{R}^m} e^{-|x|} \operatorname{dvol}}$$
$$= \frac{\operatorname{vol} \Delta}{m! \, \omega_m}$$

| •                | •                | ٠                     | ·                     | ·                     | ·                                     | ·                        | ·                | ·                                     | ·                 | ٠                     | ·                     | ·                 | ·                               | ·          | ·                | ·                | ·                 | ٠                     | ·                     | ·                     | ·                     | ·                          | ·                | ·                                     | •               |
|------------------|------------------|-----------------------|-----------------------|-----------------------|---------------------------------------|--------------------------|------------------|---------------------------------------|-------------------|-----------------------|-----------------------|-------------------|---------------------------------|------------|------------------|------------------|-------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------------|------------------|---------------------------------------|-----------------|
| •                | •                | •                     | •                     | ·                     | ·                                     | ·                        | ·                | ·                                     | ·                 | •                     | •                     | ·                 | ·                               | ·          | ·                | ·                | ·                 | •                     | •                     | ·                     | ·                     | ·                          | ·                | ·                                     | •               |
| •                | •                | •                     | •                     | ·                     | ·                                     | ·                        | ·                | ·                                     | ·                 | •                     | •                     | ·                 | ·                               | ·          | ·                | ·                | ·                 | •                     | •                     | ·                     | ·                     | ·                          | ·                | ·                                     | •               |
| •                | ·                | ·                     | ·                     | ·                     | ·                                     | ·                        | ·                | ·                                     | ·                 | ·                     | ·                     | ·                 | ·                               | ·          | ·                | ·                | ·                 | ·                     | ·                     | ·                     | ·                     | ·                          | ·                | ·                                     | •               |
| •                | ·                | ·                     | ·                     | ·                     | ٠                                     | ٠                        | ·                | ·                                     | ·                 | ·                     | ·                     | ·                 | ٠                               | ٠          | ·                | ٠                | ·                 | ·                     | ·                     | ·                     | ٠                     | ·                          | ·                | ·                                     | ·               |
| •                | ·                | ٠                     | ·                     | ·                     | ٠                                     | ٠                        | ·                | ·                                     | ·                 | ٠                     | ٠                     | ·                 | ٠                               | ٠          | ·                | ·                | ·                 | ٠                     | ٠                     | ·                     | ٠                     | ٠                          | ·                | ·                                     | •               |
| ·                | ·                | •                     | •                     | ·                     | ·                                     | ·                        | ·                | ·                                     | ·                 | •                     | •                     | ·                 | ·                               | ·          | ·                | ·                | ·                 | •                     | •                     | ·                     | ·                     | ·                          | ·                | ·                                     | •               |
| •                | ·                | ٠                     | •                     | ÷                     | ·                                     | ·                        | ·                | ·                                     | ٠                 | ٠                     | •                     | ÷                 | ·                               | ·          | ·                | ·                | ٠                 | ٠                     | •                     | ÷                     | ·                     | ·                          | ·                | ·                                     | •               |
| •                | ·                | ٠                     | ÷                     | ·                     | ·                                     | ·                        | ·                | ·                                     | ٠                 | ٠                     | ÷                     | ·                 | ·                               | ·          | ·                | ·                | ٠                 | ٠                     | ÷                     | ·                     | ·                     | ·                          | ·                | ·                                     | •               |
| •                | •                | •                     | •                     | ·                     | ·                                     | ·                        | ·                | ·                                     | ·                 | •                     | •                     | ·                 | ·                               | ·          | ·                | ·                | ·                 | •                     | •                     | ·                     | ·                     | ·                          | ·                | ·                                     | •               |
| •                | •                | •                     | •                     | ·                     | ·                                     | ·                        | ·                | ·                                     | ·                 | •                     | •                     | ·                 | ·                               | ·          | ·                | ·                | ·                 | •                     | •                     | ·                     | ·                     | ·                          | ·                | ·                                     | •               |
| •                | ·                | ·                     | •                     | ·                     | ·                                     | ·                        | ·                | ·                                     | ·                 | ·                     | ·                     | ·                 | ·                               | ·          | ·                | ·                | ·                 | ·                     | ·                     | ·                     | ·                     | ·                          | ·                | ·                                     | •               |
| •                | ·                | ·                     | ·                     | ·                     | ٠                                     | ٠                        | ·                | ·                                     | ·                 | ·                     | ·                     | ٠                 | ٠.                              | •          | ·                | ٠                | ·                 | ·                     | ·                     | ·                     | ٠                     | ٠                          | ·                | ·                                     | ·               |
|                  |                  |                       |                       |                       |                                       |                          |                  |                                       |                   |                       |                       |                   | _                               |            |                  |                  |                   |                       |                       |                       |                       |                            |                  |                                       |                 |
| •                | •                | •                     | •                     | •                     | •                                     | •                        | •                | •                                     | •                 | •                     | •                     | ٠.                | 1                               | <i>I</i> . | •                | •                | •                 | •                     | •                     | •                     | •                     | •                          | •                | •                                     | •               |
| :                | :                |                       |                       | :                     | :                                     | :                        | :                | :                                     | :                 |                       |                       | •                 | Ļ                               | 7.         | :                | :                | :                 |                       |                       | :                     | :                     | :                          | :                | :                                     | ÷               |
| :                | •                | •                     | •                     | •                     | •                                     | :                        | :                | :                                     | :                 | •                     | •                     |                   | Ļ                               | 7.         | :                | :                | :                 | •                     | •                     | •                     | •                     | :                          | :                | :                                     |                 |
| •                | •                | :                     | •                     | •                     | •                                     |                          | :                | :                                     | :                 | :                     | •                     | •                 | Ż                               | Z          | :                | •                | :                 | :                     | •                     | •                     | •                     | •                          | :                | :                                     | •               |
| ·<br>·<br>·      |                  | •                     | •                     |                       |                                       |                          |                  |                                       |                   | •                     | •                     | •                 |                                 |            |                  |                  |                   | •                     | •                     |                       |                       |                            |                  |                                       | •               |
|                  | •                | •                     |                       |                       |                                       |                          |                  |                                       |                   | •                     |                       | •                 |                                 |            |                  |                  |                   | •                     |                       |                       |                       |                            |                  |                                       | •               |
|                  | ·<br>·<br>·      |                       | ·<br>·<br>·           |                       |                                       |                          | ·<br>·<br>·      |                                       | ·<br>·<br>·       | ·<br>·<br>·           | ·<br>·<br>·           | •                 | Z                               |            | ·<br>·<br>·      |                  | ·<br>·<br>·       |                       | ·<br>·<br>·           |                       |                       | ·<br>·<br>·<br>·           | ·<br>·<br>·      |                                       | •               |
|                  | ·<br>·<br>·<br>· | ·<br>·<br>·           | ·<br>·<br>·           | ·<br>·<br>·<br>·      | ·<br>·<br>·<br>·                      | ·<br>·<br>·<br>·         | ·<br>·<br>·<br>· | ·<br>·<br>·                           | ·<br>·<br>·       | ·<br>·<br>·           | ·<br>·<br>·           | ·<br>·<br>·<br>·  | Z<br>-<br>-<br>-<br>-<br>-      |            | ·<br>·<br>·<br>· |                  | ·<br>·<br>·       | ·<br>·<br>·           | ·<br>·<br>·           | ·<br>·<br>·<br>·      | ·<br>·<br>·<br>·      | ·<br>·<br>·<br>·           | ·<br>·<br>·<br>· | ·<br>·<br>·                           | • • • • •       |
| ·<br>·<br>·<br>· | ·<br>·<br>·<br>· |                       | ·<br>·<br>·           | ·<br>·<br>·           | ·<br>·<br>·<br>·                      | ·<br>·<br>·<br>·         | ·<br>·<br>·<br>· | ·<br>·<br>·<br>·                      | ·<br>·<br>·       | ·<br>·<br>·           | ·<br>·<br>·           | ·<br>·<br>·<br>·  | Z<br>-<br>-<br>-<br>-<br>-<br>- |            | ·<br>·<br>·<br>· |                  | ·<br>·<br>·       | ·<br>·<br>·           | ·<br>·<br>·           | ·<br>·<br>·           | ·<br>·<br>·<br>·      | ·<br>·<br>·<br>·<br>·      | ·<br>·<br>·<br>· | ·<br>·<br>·<br>·                      | • • • • • • •   |
| ·<br>·<br>·<br>· | •                | • • • • • • •         | • • • • • • • •       | ·<br>·<br>· ·<br>· ·  | ·<br>·<br>·<br>·                      | ·<br>·<br>·<br>·         | ·<br>·<br>·<br>· | ·<br>·<br>·<br>·                      | ·<br>·<br>·<br>·  | • • • • • • •         | • • • • • • • •       | •<br>• • •<br>• • | /<br>·<br>·<br>·                |            | ·<br>·<br>·<br>· | ·<br>·<br>·<br>· | ·<br>·<br>·<br>·  | • • • • • • •         | • • • • • • • •       | ·<br>·<br>· ·<br>· ·  | ·<br>·<br>·<br>·<br>· | ·<br>·<br>·<br>·<br>·      | ·<br>·<br>·<br>· | ·<br>·<br>·<br>·                      | • • • • • • • • |
| ·<br>·<br>·<br>· | • • • • • • • •  | • • • • • • • • •     | • • • • • • • • •     | • • • • • • • • •     | ·<br>·<br>·<br>·<br>·                 | ·<br>· · · · · · · · · · | ·<br>·<br>·<br>· | • • • • • • • • • •                   | • • • • • • • • • | • • • • • • • • •     | • • • • • • • • •     | • • • • • • •     | /                               |            | ·<br>·<br>·<br>· | ·<br>·<br>· ·    | • • • • • • • • • | • • • • • • • • •     | • • • • • • • • •     | • • • • • • • • •     | ·<br>·<br>·<br>·<br>· | ·<br>·<br>·<br>·<br>·      | ·<br>·<br>·<br>· | • • • • • • • • • •                   |                 |
| ·<br>·<br>·<br>· | ·<br>·<br>·<br>· | • • • • • • • • • • • | • • • • • • • • • • • | • • • • • • • • • • • | · · · · · · · · · · · · · · · · · · · | ·<br>·<br>·<br>·<br>·    | ·<br>·<br>·<br>· | · · · · · · · · · · · · · · · · · · · | ·<br>·<br>·<br>·  | • • • • • • • • • • • | • • • • • • • • • • • | • • • • • • • • • | /                               |            | ·<br>·<br>·<br>· | ·<br>·<br>·<br>· | ·<br>·<br>·<br>·  | • • • • • • • • • • • | • • • • • • • • • • • | • • • • • • • • • • • | ·<br>·<br>·<br>·<br>· | ·<br>·<br>·<br>·<br>·<br>· | ·<br>·<br>·<br>· | · · · · · · · · · · · · · · · · · · · |                 |

Let  $\mathcal{L}$  be a 'small' lattice in  $\mathbb{R}^m$ . Homogeneous so has a weighting.

 $w = \frac{\operatorname{vol} \Delta}{\sum\limits_{a \in \mathcal{L}} e^{-d(0,a)} \operatorname{vol} \Delta} \simeq \frac{\operatorname{vol} \Delta}{\int\limits_{x \in \mathbb{R}^m} e^{-|x|} \operatorname{dvol}}$  $= \frac{\operatorname{vol} \Delta}{m! \, \omega_m}$ 



Suppose  $A \subset \mathbb{R}^m$  is 'large' and the closure of an open subset.

Let  $\mathcal{L}$  be a 'small' lattice in  $\mathbb{R}^m$ . Homogeneous so has a weighting.

 $w = \frac{\operatorname{vol} \Delta}{\sum\limits_{a \in \mathcal{L}} e^{-d(0,a)} \operatorname{vol} \Delta} \simeq \frac{\operatorname{vol} \Delta}{\int\limits_{x \in \mathbb{R}^m} e^{-|x|} \operatorname{dvol}}$  $= \frac{\operatorname{vol} \Delta}{m! \, \omega_m}$ 



Suppose  $A \subset \mathbb{R}^m$  is 'large' and the closure of an open subset. Contribution to  $|A \cap \mathcal{L}|$  due to the 'bulk' far from the boundary is 'roughly'
## Bulk approximation heuristic

Let  $\mathcal{L}$  be a 'small' lattice in  $\mathbb{R}^m$ . Homogeneous so has a weighting.

 $w = \frac{\operatorname{vol} \Delta}{\sum\limits_{a \in \mathcal{L}} e^{-d(0,a)} \operatorname{vol} \Delta} \simeq \frac{\operatorname{vol} \Delta}{\int\limits_{x \in \mathbb{R}^m} e^{-|x|} \operatorname{dvol}}$  $= \frac{\operatorname{vol} \Delta}{m! \, \omega_m}$ 



Suppose  $A \subset \mathbb{R}^m$  is 'large' and the closure of an open subset.

Contribution to  $|A\cap \mathcal{L}|$  due to the 'bulk' far from the boundary is 'roughly'

$$\sum_{a \in \mathsf{bulk}} \frac{\mathsf{vol}\,\Delta}{m!\,\omega_m}$$

## Bulk approximation heuristic

Let  $\mathcal{L}$  be a 'small' lattice in  $\mathbb{R}^m$ . Homogeneous so has a weighting.

 $w = \frac{\operatorname{vol} \Delta}{\sum\limits_{a \in \mathcal{L}} e^{-d(0,a)} \operatorname{vol} \Delta} \simeq \frac{\operatorname{vol} \Delta}{\int\limits_{x \in \mathbb{R}^m} e^{-|x|} \operatorname{dvol}}$  $= \frac{\operatorname{vol} \Delta}{m! \, \omega_m}$ 



Suppose  $A \subset \mathbb{R}^m$  is 'large' and the closure of an open subset.

Contribution to  $|A\cap \mathcal{L}|$  due to the 'bulk' far from the boundary is 'roughly'

$$\sum_{a \in \text{bulk}} \frac{\operatorname{vol} \Delta}{m! \, \omega_m} \sim \frac{\operatorname{vol} A}{m! \, \omega_m}$$

## Bulk approximation heuristic

Let  $\mathcal{L}$  be a 'small' lattice in  $\mathbb{R}^m$ . Homogeneous so has a weighting.

 $w = \frac{\operatorname{vol} \Delta}{\sum\limits_{a \in \mathcal{L}} e^{-d(0,a)} \operatorname{vol} \Delta} \simeq \frac{\operatorname{vol} \Delta}{\int\limits_{x \in \mathbb{R}^m} e^{-|x|} \operatorname{dvol}}$  $= \frac{\operatorname{vol} \Delta}{m! \, \omega_m}$ 



Suppose  $A \subset \mathbb{R}^m$  is 'large' and the closure of an open subset.

Contribution to  $|A\cap \mathcal{L}|$  due to the 'bulk' far from the boundary is 'roughly'

$$\sum_{a \in \mathsf{bulk}} \frac{\mathsf{vol}\,\Delta}{m!\,\omega_m} \sim \frac{\mu_m A}{m!\,\omega_m}$$

Define the valuation P of compact subset  $A \subset \mathbb{R}^m$ 

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \, \omega_i}$$

Define the valuation P of compact subset  $A \subset \mathbb{R}^m$ 

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \,\omega_i} = \frac{\mu_m A}{m! \,\omega_m} + \dots + \frac{\mu_2 A}{2\pi} + \frac{\mu_1 A}{2} + \chi A.$$

Define the valuation P of compact subset  $A \subset \mathbb{R}^m$ 

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \, \omega_i} = \frac{\mu_m A}{m! \, \omega_m} + \dots + \frac{\mu_2 A}{2\pi} + \frac{\mu_1 A}{2} + \chi A.$$

Let  $\ddot{A} \subset A$  mean a finite subset.

Define the valuation P of compact subset  $A \subset \mathbb{R}^m$ 

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \, \omega_i} = \frac{\mu_m A}{m! \, \omega_m} + \dots + \frac{\mu_2 A}{2\pi} + \frac{\mu_1 A}{2} + \chi A.$$

Let  $\ddot{A} \subset A$  mean a finite subset.

Guess.

Define the valuation P of compact subset  $A \subset \mathbb{R}^m$ 

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \, \omega_i} = \frac{\mu_m A}{m! \, \omega_m} + \dots + \frac{\mu_2 A}{2\pi} + \frac{\mu_1 A}{2} + \chi A.$$

Let  $\ddot{A} \subset A$  mean a finite subset.

Guess.

• For  $\ddot{A}$  a reasonable approximation:  $|\ddot{A}| \simeq |A|$ .

Define the valuation P of compact subset  $A \subset \mathbb{R}^m$ 

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \,\omega_i} = \frac{\mu_m A}{m! \,\omega_m} + \dots + \frac{\mu_2 A}{2\pi} + \frac{\mu_1 A}{2} + \chi A.$$

Let  $\ddot{A} \subset A$  mean a finite subset.

Guess.

- ► For  $\ddot{A}$  a reasonable approximation:  $|\ddot{A}| \simeq |A|$ .
- ▶ For A large and closure of an open set:  $|\ddot{A}| \simeq P(A)$  [bulk approximation].

Define the valuation P of compact subset  $A \subset \mathbb{R}^m$ 

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \,\omega_i} = \frac{\mu_m A}{m! \,\omega_m} + \dots + \frac{\mu_2 A}{2\pi} + \frac{\mu_1 A}{2} + \chi A.$$

Let  $\ddot{A} \subset A$  mean a finite subset.

Guess.

- ► For  $\ddot{A}$  a reasonable approximation:  $|\ddot{A}| \simeq |A|$ .
- ▶ For A large and closure of an open set:  $|\ddot{A}| \simeq P(A)$  [bulk approximation].

Define the valuation P of compact subset  $A \subset \mathbb{R}^m$ 

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \, \omega_i} = \frac{\mu_m A}{m! \, \omega_m} + \dots + \frac{\mu_2 A}{2\pi} + \frac{\mu_1 A}{2} + \chi A.$$

Let  $\ddot{A} \subset A$  mean a finite subset.

Guess.

- ► For  $\ddot{A}$  a reasonable approximation:  $|\ddot{A}| \simeq |A|$ .
- ▶ For A large and closure of an open set:  $|\ddot{A}| \simeq P(A)$  [bulk approximation].

Define the valuation P of compact subset  $A \subset \mathbb{R}^m$ 

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \,\omega_i} = \frac{\mu_m A}{m! \,\omega_m} + \dots + \frac{\mu_2 A}{2\pi} + \frac{\mu_1 A}{2} + \chi A.$$

Let  $\ddot{A} \subset A$  mean a finite subset.

Guess.

- ► For  $\ddot{A}$  a reasonable approximation:  $|\ddot{A}| \simeq |A|$ .
- ▶ For A large and closure of an open set:  $|\ddot{A}| \simeq P(A)$  [bulk approximation].

Test the guess.

• Pick some simple subset A in  $\mathbb{R}^2$  or  $\mathbb{R}^3$  and a scale factor t > 0.

Define the valuation P of compact subset  $A \subset \mathbb{R}^m$ 

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \,\omega_i} = \frac{\mu_m A}{m! \,\omega_m} + \dots + \frac{\mu_2 A}{2\pi} + \frac{\mu_1 A}{2} + \chi A.$$

Let  $\ddot{A} \subset A$  mean a finite subset.

Guess.

- ► For  $\ddot{A}$  a reasonable approximation:  $|\ddot{A}| \simeq |A|$ .
- ▶ For A large and closure of an open set:  $|\ddot{A}| \simeq P(A)$  [bulk approximation].

- Pick some simple subset A in  $\mathbb{R}^2$  or  $\mathbb{R}^3$  and a scale factor t > 0.
- ► Calculate *P*(*tA*).

Define the valuation P of compact subset  $A \subset \mathbb{R}^m$ 

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \,\omega_i} = \frac{\mu_m A}{m! \,\omega_m} + \dots + \frac{\mu_2 A}{2\pi} + \frac{\mu_1 A}{2} + \chi A.$$

Let  $\ddot{A} \subset A$  mean a finite subset.

Guess.

- ► For  $\ddot{A}$  a reasonable approximation:  $|\ddot{A}| \simeq |A|$ .
- ▶ For A large and closure of an open set:  $|\ddot{A}| \simeq P(A)$  [bulk approximation].

- Pick some simple subset A in  $\mathbb{R}^2$  or  $\mathbb{R}^3$  and a scale factor t > 0.
- ► Calculate *P*(*tA*).
- Get a computer to calculate  $|t\ddot{A}|$  for an approximation  $\ddot{A}$ .

Define the valuation P of compact subset  $A \subset \mathbb{R}^m$ 

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \,\omega_i} = \frac{\mu_m A}{m! \,\omega_m} + \dots + \frac{\mu_2 A}{2\pi} + \frac{\mu_1 A}{2} + \chi A.$$

Let  $\ddot{A} \subset A$  mean a finite subset.

Guess.

- ► For  $\ddot{A}$  a reasonable approximation:  $|\ddot{A}| \simeq |A|$ .
- ▶ For A large and closure of an open set:  $|\ddot{A}| \simeq P(A)$  [bulk approximation].

- Pick some simple subset A in  $\mathbb{R}^2$  or  $\mathbb{R}^3$  and a scale factor t > 0.
- ► Calculate *P*(*tA*).
- Get a computer to calculate  $|t\ddot{A}|$  for an approximation  $\ddot{A}$ .
- Compare the two!

Define the valuation P of compact subset  $A \subset \mathbb{R}^m$ 

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \,\omega_i} = \frac{\mu_m A}{m! \,\omega_m} + \dots + \frac{\mu_2 A}{2\pi} + \frac{\mu_1 A}{2} + \chi A.$$

Let  $\ddot{A} \subset A$  mean a finite subset.

Guess.

- ► For  $\ddot{A}$  a reasonable approximation:  $|\ddot{A}| \simeq |A|$ .
- ▶ For A large and closure of an open set:  $|\ddot{A}| \simeq P(A)$  [bulk approximation].

- Pick some simple subset A in  $\mathbb{R}^2$  or  $\mathbb{R}^3$  and a scale factor t > 0.
- ► Calculate *P*(*tA*).
- Get a computer to calculate  $|t\ddot{A}|$  for an approximation  $\ddot{A}$ .
- Compare the two!
- Repeat.

## Some calculations

Squares:



Cubes:



Discs:



#### Annuli:



#### Some calculations Squares:



Cubes:





Fractals: Ternary Cantor sets  $T^0_{\ell} := \ell$ 

## Fractals: Ternary Cantor sets $\mathcal{T}^3_{\ell} \coloneqq \underbrace{\cdots \cdots \cdots}_{\ell}$

The length  $\ell$  ternary Cantor set is the limit of these sets:

The length  $\ell$  ternary Cantor set is the limit of these sets:  $T_{\ell}^k \to T_{\ell}$ 

## Fractals: Ternary Cantor sets $\mathcal{T}^{3}_{\ell} := \underbrace{\cdots}_{\ell} \underbrace{\cdots}_{\ell}$

$$\left|T_{\ell}^{k}\right| = 1 + \frac{1}{2}\sum_{i=1}^{k} 2^{i} \tanh\left(\frac{\ell}{2\cdot 3^{i}}\right) + 2^{k} \tanh\left(\frac{\ell}{2\cdot 3^{k}}\right)$$

## Fractals: Ternary Cantor sets $T_{\ell}^{3} := \underbrace{\cdots}_{\ell}$

$$\left| \mathcal{T}_{\ell}^{k} \right| \rightarrow 1 + \frac{1}{2} \sum_{i=1}^{\infty} 2^{i} \operatorname{tanh} \left( \frac{\ell}{2 \cdot 3^{i}} \right)$$

## Fractals: Ternary Cantor sets $T_{\ell}^{3} := \underbrace{\cdots}_{\ell}$

$$\left| T_{\ell} \right| = 1 + \frac{1}{2} \sum_{i=1}^{\infty} 2^{i} \tanh\left(\frac{\ell}{2 \cdot 3^{i}}\right)$$

## Fractals: Ternary Cantor sets $T_{\ell}^{3} := \underbrace{\cdots}_{\ell} \xrightarrow{\ell}$

$$ig| {\mathcal T}_\ell ig| \,=\, f(\ell) \cdot \ell^{\log_3 2} \,+\, O(\ell^{-1}) \qquad {
m as} \,\, \ell o \infty$$

(where 
$$f(3\ell) = f(\ell)$$
 and  $f(\ell) \simeq 1.205$ .)

## Fractals: Ternary Cantor sets $T_{\ell}^{3} := \underbrace{\cdots}_{\ell} \underbrace{\cdots}_{\ell}$

The length  $\ell$  ternary Cantor set is the limit of these sets:  $T_{\ell}^k \to T_{\ell}$ It is easy to calculate the magnitudes of the approximations:

$$\left| \mathsf{T}_{\ell} \right| = f(\ell) \cdot \ell^{\log_3 2} + O(\ell^{-1}) \quad \text{as } \ell \to \infty$$

(where 
$$f(3\ell) = f(\ell)$$
 and  $f(\ell) \simeq 1.205$ .)

Lemma: Suppse p is a function on  $\{T_{\ell}\}$  then p satisfies the inclusion-exclusion principle if and only if

$$p(T_{\ell}) = f(\ell) \cdot \ell^{\log_3 2}$$

for some  $f: (0, \infty) \to \mathbb{R}$  with  $f(3\ell) = f(\ell)$ .

## Fractals: Ternary Cantor sets $T_{\ell}^{3} := \underbrace{\cdots}_{\ell}$

$$ig| {\mathcal T}_\ell ig| \,=\, f(\ell) \cdot \ell^{\log_3 2} \,+\, O(\ell^{-1}) \qquad {
m as} \,\, \ell o \infty$$

(where 
$$f(3\ell) = f(\ell)$$
 and  $f(\ell) \simeq 1.205$ .)



Convex Conjecture: If  $K \in \mathbb{R}^m$  is a convex set then

|K| = P(K).

Convex Conjecture: If  $K \in \mathbb{R}^m$  is a convex set then

|K| = P(K).

Asymptotic Principle: There is a large class  $\mathcal{C}$  of compact subsets of Euclidean space and a function  $p: \mathcal{C} \to \mathbb{R}$  which is tractable and interesting, possibly related to valuations, such that for  $A \in \mathcal{C}$ 

$$|tA| \simeq p(tA)$$
 as  $t \to \infty$ .

Convex Conjecture: If  $K \in \mathbb{R}^m$  is a convex set then

|K| = P(K).

Asymptotic Principle: There is a large class  $\mathcal{C}$  of compact subsets of Euclidean space and a function  $p: \mathcal{C} \to \mathbb{R}$  which is tractable and interesting, possibly related to valuations, such that for  $A \in \mathcal{C}$ 

$$|tA| \simeq p(tA)$$
 as  $t \to \infty$ .

For example

- ▶ finite sets of points [*p* = cardinality = *P*]
- circles [p = half the circumference = P]
- finite unions of intervals in the line [p = P]
- Cantor sets  $[p(T_{\ell}) = f(\ell) \cdot \ell^{\log_3 2}]$

Convex Conjecture: If  $K \in \mathbb{R}^m$  is a convex set then

|K| = P(K).

Asymptotic Principle: There is a large class  $\mathcal{C}$  of compact subsets of Euclidean space and a function  $p: \mathcal{C} \to \mathbb{R}$  which is tractable and interesting, possibly related to valuations, such that for  $A \in \mathcal{C}$ 

$$|tA| \simeq p(tA)$$
 as  $t \to \infty$ .

For example

- ▶ finite sets of points [p = cardinality = P]
- circles [p = half the circumference = P]
- finite unions of intervals in the line [p = P]
- Cantor sets  $[p(T_{\ell}) = f(\ell) \cdot \ell^{\log_3 2}]$

Guess: For A the closure of an open set p(A) = P(A).

Measure theoretic approach
A weight measure for A is a signed measure  $\nu$  such that that

$$\int_{b\in A} e^{-d(a,b)} \mathrm{d}\nu_b = 1 \qquad \text{for all } a\in A.$$

A weight measure for A is a signed measure  $\nu$  such that that

$$\int_{b\in A} e^{-d(a,b)} \mathrm{d}\nu_b = 1 \qquad \text{for all } a\in A.$$

If a weight measure  $\nu$  exists then the measure magnitude is defined by

$$\|A\| := \int_A \mathrm{d}\nu.$$

A weight measure for A is a signed measure  $\nu$  such that that

$$\int_{b\in A} e^{-d(a,b)} \mathrm{d}\nu_b = 1 \qquad \text{for all } a\in A.$$

If a weight measure  $\boldsymbol{\nu}$  exists then the measure magnitude is defined by

$$\|A\| := \int_A \mathrm{d}\nu.$$



A weight measure for A is a signed measure  $\nu$  such that that

$$\int_{b\in A} e^{-d(a,b)} \mathrm{d}\nu_b = 1 \qquad \text{for all } a\in A.$$

If a weight measure  $\boldsymbol{\nu}$  exists then the measure magnitude is defined by

$$\|A\| := \int_A \mathrm{d}\nu.$$

Eg: For  $L_{\ell} := \underbrace{\ell}_{\ell}$  a weight measure is  $\frac{1}{2}(\mu + \delta_0 + \delta_{\ell})$ . Hence  $\|L_{\ell}\| = \int_{L_{\ell}} \frac{1}{2}(d\mu + d\delta_0 + d\delta_{\ell})$ 

A weight measure for A is a signed measure  $\nu$  such that that

$$\int_{b\in A} e^{-d(a,b)} \mathrm{d}\nu_b = 1 \qquad \text{for all } a\in A.$$

If a weight measure  $\boldsymbol{\nu}$  exists then the measure magnitude is defined by

$$\|A\| := \int_A \mathrm{d}\nu.$$

Eg: For  $L_{\ell} := \underbrace{\ell}_{\ell}$  a weight measure is  $\frac{1}{2}(\mu + \delta_0 + \delta_{\ell})$ . Hence  $\|L_{\ell}\| = \frac{1}{2}(\ell + 1 + 1)$ 

A weight measure for A is a signed measure  $\nu$  such that that

$$\int_{b\in A} e^{-d(a,b)} \mathrm{d}\nu_b = 1 \qquad \text{for all } a\in A.$$

If a weight measure  $\boldsymbol{\nu}$  exists then the measure magnitude is defined by

$$\|A\| := \int_A \mathrm{d}\nu.$$



A weight measure for A is a signed measure  $\nu$  such that that

$$\int_{b\in A} e^{-d(a,b)} \mathrm{d}\nu_b = 1 \qquad \text{for all } a \in A.$$

If a weight measure  $\nu$  exists then the measure magnitude is defined by

$$\|A\| := \int_A \mathrm{d}\nu.$$



Theorem (Meckes): If  $A \subset \mathbb{R}^m$  and ||A|| exists then ||A|| = |A|.

Suppose A a homogeneous metric space and  $\mu$  an invariant measure. There is weight measure  $\nu$  on A: for any fixed  $a \in A$ 

$$\nu := \frac{\mu}{\int_{b \in A} e^{-d(a,b)} \mathrm{d}\mu_b}$$

Suppose A a homogeneous metric space and  $\mu$  an invariant measure. There is weight measure  $\nu$  on A: for any fixed  $a \in A$ 

$$\nu := \frac{\mu}{\int_{b \in A} e^{-d(a,b)} d\mu_b} \qquad \text{so} \qquad \|A\| = \frac{\int_A d\mu}{\int_{b \in A} e^{-d(a,b)} d\mu_b}.$$

Suppose A a homogeneous metric space and  $\mu$  an invariant measure. There is weight measure  $\nu$  on A: for any fixed  $a \in A$ 

$$\nu := \frac{\mu}{\int_{b \in \mathcal{A}} e^{-d(a,b)} \mathrm{d}\mu_b} \qquad \text{so} \qquad \|A\| = \frac{\int_{\mathcal{A}} \mathrm{d}\mu}{\int_{b \in \mathcal{A}} e^{-d(a,b)} \mathrm{d}\mu_b}.$$

Suppose X is a homogeneous Riemannian manifold.

Suppose A a homogeneous metric space and  $\mu$  an invariant measure. There is weight measure  $\nu$  on A: for any fixed  $a \in A$ 

$$\nu := \frac{\mu}{\int_{b \in \mathcal{A}} e^{-d(a,b)} \mathrm{d}\mu_b} \qquad \text{so} \qquad \|A\| = \frac{\int_{\mathcal{A}} \mathrm{d}\mu}{\int_{b \in \mathcal{A}} e^{-d(a,b)} \mathrm{d}\mu_b}.$$

Suppose X is a homogeneous Riemannian manifold.

► It has the geodesic metric.

Suppose A a homogeneous metric space and  $\mu$  an invariant measure. There is weight measure  $\nu$  on A: for any fixed  $a \in A$ 

$$\nu := \frac{\mu}{\int_{b \in \mathcal{A}} e^{-d(a,b)} \mathrm{d}\mu_b} \qquad \text{so} \qquad \|A\| = \frac{\int_{\mathcal{A}} \mathrm{d}\mu}{\int_{b \in \mathcal{A}} e^{-d(a,b)} \mathrm{d}\mu_b}.$$

Suppose X is a homogeneous Riemannian manifold.

- It has the geodesic metric.
- It has an invariant measure from the volume form.

Suppose A a homogeneous metric space and  $\mu$  an invariant measure. There is weight measure  $\nu$  on A: for any fixed  $a \in A$ 

$$\nu := \frac{\mu}{\int_{b \in \mathcal{A}} e^{-d(a,b)} \mathrm{d}\mu_b} \qquad \text{so} \qquad \|A\| = \frac{\int_{\mathcal{A}} \mathrm{d}\mu}{\int_{b \in \mathcal{A}} e^{-d(a,b)} \mathrm{d}\mu_b}.$$

Suppose X is a homogeneous Riemannian manifold.

- It has the geodesic metric.
- It has an invariant measure from the volume form.

So

$$\|X\| = \frac{\operatorname{vol}(X)}{\int_X e^{-d(a,b)} \operatorname{dvol}_b}.$$

$$\|S_{R}^{n}\| = \begin{cases} \frac{2\left(\left(\frac{R}{n-1}\right)^{2}+1\right)\left(\left(\frac{R}{n-3}\right)^{2}+1\right)\dots\left(\left(\frac{R}{1}\right)^{2}+1\right)}{1+e^{-\pi R}} & \text{for } n \text{ even} \\ \frac{\pi R\left(\left(\frac{R}{n-1}\right)^{2}+1\right)\left(\left(\frac{R}{n-3}\right)^{2}+1\right)\dots\left(\left(\frac{R}{2}\right)^{2}+1\right)}{1-e^{-\pi R}} & \text{for } n \text{ odd} \end{cases}$$

Suppose  $S_R^n$  is the radius R sphere with the geodesic metric.

$$\|S_{R}^{n}\| = \begin{cases} \frac{2\left(\left(\frac{R}{n-1}\right)^{2}+1\right)\left(\left(\frac{R}{n-3}\right)^{2}+1\right)\dots\left(\left(\frac{R}{1}\right)^{2}+1\right)}{1+e^{-\pi R}} & \text{for } n \text{ even} \\ \\ \frac{\pi R\left(\left(\frac{R}{n-1}\right)^{2}+1\right)\left(\left(\frac{R}{n-3}\right)^{2}+1\right)\dots\left(\left(\frac{R}{2}\right)^{2}+1\right)}{1-e^{-\pi R}} & \text{for } n \text{ odd} \end{cases}$$

Theorem (Meckes):  $||S_R^n|| = |S_R^n|$ .

$$\|S_{R}^{n}\| = \begin{cases} \frac{2\left(\left(\frac{R}{n-1}\right)^{2}+1\right)\left(\left(\frac{R}{n-3}\right)^{2}+1\right)\dots\left(\left(\frac{R}{1}\right)^{2}+1\right)}{1+e^{-\pi R}} & \text{for } n \text{ even} \\ \\ \frac{\pi R\left(\left(\frac{R}{n-1}\right)^{2}+1\right)\left(\left(\frac{R}{n-3}\right)^{2}+1\right)\dots\left(\left(\frac{R}{2}\right)^{2}+1\right)}{1-e^{-\pi R}} & \text{for } n \text{ odd} \end{cases}$$



$$\|S_{R}^{n}\| = \begin{cases} \frac{2\left(\left(\frac{R}{n-1}\right)^{2}+1\right)\left(\left(\frac{R}{n-3}\right)^{2}+1\right)\dots\left(\left(\frac{R}{1}\right)^{2}+1\right)}{1+e^{-\pi R}} & \text{for } n \text{ even} \\ \frac{\pi R\left(\left(\frac{R}{n-1}\right)^{2}+1\right)\left(\left(\frac{R}{n-3}\right)^{2}+1\right)\dots\left(\left(\frac{R}{2}\right)^{2}+1\right)}{1-e^{-\pi R}} & \text{for } n \text{ odd} \end{cases}$$



$$\|S_R^n\| = \frac{\mu_n(S_R^n)}{n!\,\omega_n} + 0 + \left[\frac{(n+1)}{3(n-1)}\right] \frac{\mu_{n-2}(S_R^n)}{(n-2)!\,\omega_{n-2}} + 0 + \dots + \chi(S_R^n) + O(R^{-1}) \quad \text{as } R \to \infty.$$



Suppose  $X^n$  is a homogeneous Riemannian manifold, t > 0.

$$||tX|| = \frac{\operatorname{vol}(tX)}{\int_X e^{-td(a,b)} \operatorname{dvol}_b}$$

Suppose  $X^n$  is a homogeneous Riemannian manifold, t > 0.

$$||tX|| = \frac{\operatorname{vol}(tX)}{\int_X e^{-td(a,b)} \operatorname{dvol}_b}$$

Key points:

Suppose  $X^n$  is a homogeneous Riemannian manifold, t > 0.

$$||tX|| = \frac{\operatorname{vol}(tX)}{\int_X e^{-td(a,b)} \operatorname{dvol}_b}$$

Key points:

• The scalar curvature  $\tau(x)$  measures the lack of 'stuff' near x.

Suppose  $X^n$  is a homogeneous Riemannian manifold, t > 0.

$$||tX|| = \frac{\operatorname{vol}(tX)}{\int_X e^{-td(a,b)} \operatorname{dvol}_b}$$

Key points:

• The scalar curvature  $\tau(x)$  measures the lack of 'stuff' near x.

• 
$$\mu_{n-2}(X) = \frac{1}{4\pi} \int_X \tau(x) \operatorname{dvol}$$

Suppose  $X^n$  is a homogeneous Riemannian manifold, t > 0.

$$\|tX\| = \frac{\mu_n(tX)}{n!\,\omega_n} + \frac{(n+1)}{3(n-1)} \frac{\mu_{n-2}(tX)}{(n-2)!\,\omega_{n-2}} + O(t^{n-4}), \quad \text{as } t \to \infty.$$

Key points:

- The scalar curvature  $\tau(x)$  measures the lack of 'stuff' near x.
- $\mu_{n-2}(X) = \frac{1}{4\pi} \int_X \tau(x) \operatorname{dvol}$

Suppose  $X^n$  is a homogeneous Riemannian manifold, t > 0.

$$\|tX\| = \frac{\mu_n(tX)}{n!\,\omega_n} + \frac{(n+1)}{3(n-1)} \frac{\mu_{n-2}(tX)}{(n-2)!\,\omega_{n-2}} + O(t^{n-4}), \quad \text{as } t \to \infty.$$

Key points:

• The scalar curvature  $\tau(x)$  measures the lack of 'stuff' near x.

• 
$$\mu_{n-2}(X) = \frac{1}{4\pi} \int_X \tau(x) \operatorname{dvol}$$

#### For example

Suppose  $\Sigma$  is a homogeneous Riemannian 2-sphere or 2-torus

$$\|t\Sigma\| = rac{{\sf Area}(t\Sigma)}{2\pi} + \chi(t\Sigma) + O(t^{-2}) \qquad {
m as} \ t o \infty.$$