Magnitude of Metric Spaces II

Tom Leinster \& Simon Willerton
Universities of Glasgow \& Sheffield

Integral Geometry and Valuation Theory, CRM Barcelona 8th September 2010

Weighting and magnitude

 Recall:- Suppose A is a finite metric space.

Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A weighting is a function $w: A \rightarrow \mathbb{R}$ such that

$$
\sum_{b \in A} e^{-d(a, b)} w_{b}=1 \quad \text { for all } a \in A
$$

Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A weighting is a function $w: A \rightarrow \mathbb{R}$ such that

$$
\sum_{b \in A} e^{-d(a, b)} w_{b}=1 \quad \text { for all } a \in A
$$

- If a weighting exists then the magnitude is given by

$$
|A|:=\sum_{a} w_{a} .
$$

Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A weighting is a function $w: A \rightarrow \mathbb{R}$ such that

$$
\sum_{b \in A} e^{-d(a, b)} w_{b}=1 \quad \text { for all } a \in A
$$

- If a weighting exists then the magnitude is given by

$$
|A|:=\sum_{a} w_{a} .
$$

Think: Each $a \in A$

Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A weighting is a function $w: A \rightarrow \mathbb{R}$ such that

$$
\sum_{b \in A} e^{-d(a, b)} w_{b}=1 \quad \text { for all } a \in A
$$

- If a weighting exists then the magnitude is given by

$$
|A|:=\sum_{a} w_{a} .
$$

Think: Each $a \in A$

- is an organism;

Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A weighting is a function $w: A \rightarrow \mathbb{R}$ such that

$$
\sum_{b \in A} e^{-d(a, b)} w_{b}=1 \quad \text { for all } a \in A
$$

- If a weighting exists then the magnitude is given by

$$
|A|:=\sum_{a} w_{a} .
$$

Think: Each $a \in A$

- is an organism;
- wishes to be at temperature 1 ;

Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A weighting is a function $w: A \rightarrow \mathbb{R}$ such that

$$
\sum_{b \in A} e^{-d(a, b)} w_{b}=1 \quad \text { for all } a \in A
$$

- If a weighting exists then the magnitude is given by

$$
|A|:=\sum_{a} w_{a} .
$$

Think: Each $a \in A$

- is an organism;
- wishes to be at temperature 1 ;
- generates w_{a} amount of heat;

Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A weighting is a function $w: A \rightarrow \mathbb{R}$ such that

$$
\sum_{b \in A} e^{-d(a, b)} w_{b}=1 \quad \text { for all } a \in A
$$

- If a weighting exists then the magnitude is given by

$$
|A|:=\sum_{a} w_{a} .
$$

Think: Each $a \in A$

- is an organism;
- wishes to be at temperature 1 ;
- generates w_{a} amount of heat;
- experiences heat from b as
$e^{-d(a, b)} w_{b}$.

Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A weighting is a function $w: A \rightarrow \mathbb{R}$ such that

$$
\sum_{b \in A} e^{-d(a, b)} w_{b}=1 \quad \text { for all } a \in A
$$

- If a weighting exists then the magnitude is given by

$$
|A|:=\sum_{a} w_{a} .
$$

Think: Each $a \in A$

- is an organism;
- wishes to be at temperature 1 ;

- experiences heat from b as
$e^{-d(a, b)} w_{b}$.

Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A weighting is a function $w: A \rightarrow \mathbb{R}$ such that

$$
\sum_{b \in A} e^{-d(a, b)} w_{b}=1 \quad \text { for all } a \in A
$$

- If a weighting exists then the magnitude is given by

$$
|A|:=\sum_{a} w_{a} .
$$

Think: Each $a \in A$

- is an organism;
- wishes to be at temperature 1 ;
- generates w_{a} amount of heat;
- experiences heat from b as
$e^{-d(a, b)} w_{b}$.

Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A weighting is a function $w: A \rightarrow \mathbb{R}$ such that

$$
\sum_{b \in A} e^{-d(a, b)} w_{b}=1 \quad \text { for all } a \in A
$$

- If a weighting exists then the magnitude is given by

$$
|A|:=\sum_{a} w_{a} .
$$

Think: Each $a \in A$

- is an organism;
- wishes to be at temperature 1 ;
- generates w_{a} amount of heat;
- experiences heat from b as
$e^{-d(a, b)} w_{b}$.

Recall: Infinite spaces and intervals

If A is an infinite metric space define

$$
|A|:=\sup \{|\ddot{A}|: \ddot{A} \subset A \text { finite }\}
$$

Recall: Infinite spaces and intervals

If A is an infinite metric space define

$$
|A|:=\sup \{|\ddot{A}|: \ddot{A} \subset A \text { finite }\}
$$

For example

$$
|\underset{\ell}{\rightleftarrows}|=\ell / 2+1
$$

Recall: Infinite spaces and intervals

If A is an infinite metric space define

$$
|A|:=\sup \{|\ddot{A}|: \ddot{A} \subset A \text { finite }\}
$$

For example

$$
|\underset{\ell}{\rightleftarrows}|=\ell / 2+1
$$

Theorem (Leinster et al.): If $\ddot{A} \subset \mathbb{R}^{m}$ is finite then $|\ddot{A}|$ exists.

Recall: Infinite spaces and intervals

If A is an infinite metric space define

$$
|A|:=\sup \{|\ddot{A}|: \ddot{A} \subset A \text { finite }\}
$$

For example

$$
|\underset{\ell}{\rightleftarrows}|=\ell / 2+1
$$

Theorem (Leinster et al.): If $\ddot{A} \subset \mathbb{R}^{m}$ is finite then $|\ddot{A}|$ exists.
Theorem (Meckes): Suppose $A \subset \mathbb{R}^{m}$. If $\left\{\ddot{A}_{i}\right\}$ is a sequence of finite subsets of A with $\ddot{A}_{i} \rightarrow A$ then $\left|A_{i}\right| \rightarrow|A|$.

Homogeneous spaces and circles

Lemma (Speyer): Suppose A is a homogeneous metric space.
There is a constant weighting w : for any fixed $a_{0} \in A$

$$
w:=\frac{1}{\sum_{a \in A} e^{-d\left(a_{0}, a\right)}} \quad \text { so } \quad|A|=\frac{\# A}{\sum_{a \in A} e^{-d\left(a_{0}, a\right)}}
$$

Homogeneous spaces and circles

Lemma (Speyer): Suppose A is a homogeneous metric space.
There is a constant weighting w : for any fixed $a_{0} \in A$

$$
w:=\frac{1}{\sum_{a \in A} e^{-d\left(a_{0}, a\right)}} \quad \text { so } \quad|A|=\frac{\# A}{\sum_{a \in A} e^{-d\left(a_{0}, a\right)}}
$$

For example

$$
\left|C_{\ell}^{n}\right|=\frac{n}{\sum_{a \in C_{\ell}^{n}} e^{-d\left(a_{0}, a\right)}}
$$

$$
C_{\ell}^{n}:=
$$

Homogeneous spaces and circles

Lemma (Speyer): Suppose A is a homogeneous metric space.
There is a constant weighting w : for any fixed $a_{0} \in A$

$$
w:=\frac{1}{\sum_{a \in A} e^{-d\left(a_{0}, a\right)}} \quad \text { so } \quad|A|=\frac{\# A}{\sum_{a \in A} e^{-d\left(a_{0}, a\right)}}
$$

For example

$$
\left|C_{\ell}^{n}\right|=\frac{n}{\sum_{a \in C_{\ell}^{n}} e^{-d\left(a_{0}, a\right)}}
$$

$$
C_{\ell}^{n}:=: \begin{gathered}
n \\
\cdot
\end{gathered}
$$

Homogeneous spaces and circles

Lemma (Speyer): Suppose A is a homogeneous metric space.
There is a constant weighting w : for any fixed $a_{0} \in A$

$$
w:=\frac{1}{\sum_{a \in A} e^{-d\left(a_{0}, a\right)}} \quad \text { so } \quad|A|=\frac{\# A}{\sum_{a \in A} e^{-d\left(a_{0}, a\right)}}
$$

For example

$$
\left|C_{\ell}^{n}\right|=\frac{n}{\sum_{a \in C_{\ell}^{n}} e^{-d\left(a_{0}, a\right)}}
$$

Homogeneous spaces and circles

Lemma (Speyer): Suppose A is a homogeneous metric space.
There is a constant weighting w : for any fixed $a_{0} \in A$

$$
w:=\frac{1}{\sum_{a \in A} e^{-d\left(a_{0}, a\right)}} \quad \text { so } \quad|A|=\frac{\# A}{\sum_{a \in A} e^{-d\left(a_{0}, a\right)}}
$$

For example

$$
\left|C_{\ell}^{n}\right| \rightarrow \frac{\ell / 2}{\int_{0}^{1} e^{-\ell d(s)} \mathrm{d} s} \quad[n \rightarrow \infty]
$$

Homogeneous spaces and circles

Lemma (Speyer): Suppose A is a homogeneous metric space.
There is a constant weighting w : for any fixed $a_{0} \in A$

$$
w:=\frac{1}{\sum_{a \in A} e^{-d\left(a_{0}, a\right)}} \quad \text { so } \quad|A|=\frac{\# A}{\sum_{a \in A} e^{-d\left(a_{0}, a\right)}}
$$

For example

$$
\left|C_{\ell}^{n}\right| \rightarrow \frac{\ell / 2}{\int_{0}^{1} e^{-\ell d(s)} \mathrm{d} s} \quad[n \rightarrow \infty]
$$

So $\quad\left|S_{\ell}^{1}\right|=\frac{\ell / 2}{\int_{0}^{1} e^{-\ell d(s)} \mathrm{d} s}$

Homogeneous spaces and circles

Lemma (Speyer): Suppose A is a homogeneous metric space.
There is a constant weighting w : for any fixed $a_{0} \in A$

$$
w:=\frac{1}{\sum_{a \in A} e^{-d\left(a_{0}, a\right)}} \quad \text { so } \quad|A|=\frac{\# A}{\sum_{a \in A} e^{-d\left(a_{0}, a\right)}}
$$

For example

$$
\left|C_{\ell}^{n}\right| \rightarrow \frac{\ell / 2}{\int_{0}^{1} e^{-\ell d(s)} \mathrm{d} s} \quad[n \rightarrow \infty]
$$

So $\quad\left|S_{\ell}^{1}\right|=\frac{\ell / 2}{\int_{0}^{1} e^{-\ell d(s)} \mathrm{d} s}$

Homogeneous spaces and circles

Lemma (Speyer): Suppose A is a homogeneous metric space.
There is a constant weighting w : for any fixed $a_{0} \in A$

$$
w:=\frac{1}{\sum_{a \in A} e^{-d\left(a_{0}, a\right)}} \quad \text { so } \quad|A|=\frac{\# A}{\sum_{a \in A} e^{-d\left(a_{0}, a\right)}}
$$

For example

$$
\left|C_{\ell}^{n}\right| \rightarrow \frac{\ell / 2}{\int_{0}^{1} e^{-\ell d(s)} \mathrm{d} s} \quad[n \rightarrow \infty]
$$

So $\quad\left|S_{\ell}^{1}\right|=\frac{\ell / 2}{\int_{0}^{1} e^{-\ell d(s)} \mathrm{d} s}$

$$
\sim \ell / 2+O\left(\ell^{-2}\right) \quad[\ell \rightarrow \infty]
$$

Approximating a square

We don't know how to calculate the magnitude of subsets of \mathbb{R}^{2}.

Approximating a square

We don't know how to calculate the magnitude of subsets of \mathbb{R}^{2}. Approximate with a finite subset

Approximating a square

We don't know how to calculate the magnitude of subsets of \mathbb{R}^{2}. Approximate with a finite subset and get maple to calculate a weighting.

Approximating a square

We don't know how to calculate the magnitude of subsets of \mathbb{R}^{2}. Approximate with a finite subset and get maple to calculate a weighting.

Bulk approximation heuristic

Let \mathcal{L} be a 'small' lattice in \mathbb{R}^{m}.

Bulk approximation heuristic

Let \mathcal{L} be a 'small' lattice in \mathbb{R}^{m}. Homogeneous so has a weighting.

Bulk approximation heuristic

Let \mathcal{L} be a 'small' lattice in \mathbb{R}^{m}. Homogeneous so has a weighting.
$w=\frac{1}{\sum_{a \in \mathcal{L}} e^{-d(0, a)}}$

Bulk approximation heuristic

Let \mathcal{L} be a 'small' lattice in \mathbb{R}^{m}. Homogeneous so has a weighting.

$$
w=\frac{\operatorname{vol} \Delta}{\sum_{a \in \mathcal{L}} e^{-d(0, a)} \operatorname{vol} \Delta}
$$

$$
\Delta
$$

Bulk approximation heuristic

Let \mathcal{L} be a 'small' lattice in \mathbb{R}^{m}. Homogeneous so has a weighting.

$$
w=\frac{\operatorname{vol} \Delta}{\sum_{a \in \mathcal{L}} e^{-d(0, a)} \operatorname{vol} \Delta} \simeq \frac{\operatorname{vol} \Delta}{\int_{x \in \mathbb{R}^{m}} e^{-|x|} \mathrm{dvol}}
$$

Bulk approximation heuristic

Let \mathcal{L} be a 'small' lattice in \mathbb{R}^{m}. Homogeneous so has a weighting.

$$
\begin{aligned}
w & =\frac{\operatorname{vol} \Delta}{\sum_{a \in \mathcal{L}} e^{-d(0, a)} \operatorname{vol} \Delta} \simeq \frac{\operatorname{vol} \Delta}{\int_{x \in \mathbb{R}^{m}} e^{-|x|} \mathrm{dvol}} \\
& =\frac{\operatorname{vol} \Delta}{m!\omega_{m}}
\end{aligned}
$$

Bulk approximation heuristic

Let \mathcal{L} be a 'small' lattice in \mathbb{R}^{m}. Homogeneous so has a weighting.

$$
\begin{aligned}
w & =\frac{\operatorname{vol} \Delta}{\sum_{a \in \mathcal{L}} e^{-d(0, a)} \operatorname{vol} \Delta} \simeq \frac{\operatorname{vol} \Delta}{\int_{x \in \mathbb{R}^{m}} e^{-|x|} \mathrm{dvol}} \\
& =\frac{\operatorname{vol} \Delta}{m!\omega_{m}}
\end{aligned}
$$

Suppose $A \subset \mathbb{R}^{m}$ is 'large' and the closure of an open subset.

Bulk approximation heuristic

Let \mathcal{L} be a 'small' lattice in \mathbb{R}^{m}. Homogeneous so has a weighting.

$$
\begin{aligned}
w & =\frac{\operatorname{vol} \Delta}{\sum_{a \in \mathcal{L}} e^{-d(0, a)} \operatorname{vol} \Delta} \simeq \frac{\operatorname{vol} \Delta}{\int_{x \in \mathbb{R}^{m}} e^{-|x|} \mathrm{dvol}} \\
& =\frac{\operatorname{vol} \Delta}{m!\omega_{m}}
\end{aligned}
$$

Suppose $A \subset \mathbb{R}^{m}$ is 'large' and the closure of an open subset. Contribution to $|A \cap \mathcal{L}|$ due to the 'bulk' far from the boundary is 'roughly'

Bulk approximation heuristic

Let \mathcal{L} be a 'small' lattice in \mathbb{R}^{m}. Homogeneous so has a weighting.

$$
\begin{aligned}
w & =\frac{\operatorname{vol} \Delta}{\sum_{a \in \mathcal{L}} e^{-d(0, a)} \operatorname{vol} \Delta} \simeq \frac{\operatorname{vol} \Delta}{\int_{x \in \mathbb{R}^{m}} e^{-|x|} \mathrm{dvol}} \\
& =\frac{\operatorname{vol} \Delta}{m!\omega_{m}}
\end{aligned}
$$

Suppose $A \subset \mathbb{R}^{m}$ is 'large' and the closure of an open subset. Contribution to $|A \cap \mathcal{L}|$ due to the 'bulk' far from the boundary is 'roughly'

$$
\sum_{a \in \text { bulk }} \frac{\operatorname{vol} \Delta}{m!\omega_{m}}
$$

Bulk approximation heuristic

Let \mathcal{L} be a 'small' lattice in \mathbb{R}^{m}. Homogeneous so has a weighting.

$$
\begin{aligned}
w & =\frac{\operatorname{vol} \Delta}{\sum_{a \in \mathcal{L}} e^{-d(0, a)} \operatorname{vol} \Delta} \simeq \frac{\operatorname{vol} \Delta}{\int_{x \in \mathbb{R}^{m}} e^{-|x|} \mathrm{dvol}} \\
& =\frac{\operatorname{vol} \Delta}{m!\omega_{m}}
\end{aligned}
$$

Suppose $A \subset \mathbb{R}^{m}$ is 'large' and the closure of an open subset. Contribution to $|A \cap \mathcal{L}|$ due to the 'bulk' far from the boundary is 'roughly'

$$
\sum_{a \in \text { bulk }} \frac{\operatorname{vol} \Delta}{m!\omega_{m}} \sim \frac{\operatorname{vol} A}{m!\omega_{m}}
$$

Bulk approximation heuristic

Let \mathcal{L} be a 'small' lattice in \mathbb{R}^{m}. Homogeneous so has a weighting.

$$
\begin{aligned}
w & =\frac{\operatorname{vol} \Delta}{\sum_{a \in \mathcal{L}} e^{-d(0, a)} \operatorname{vol} \Delta} \simeq \frac{\operatorname{vol} \Delta}{\int_{x \in \mathbb{R}^{m}} e^{-|x|} \mathrm{dvol}} \\
& =\frac{\operatorname{vol} \Delta}{m!\omega_{m}}
\end{aligned}
$$

Suppose $A \subset \mathbb{R}^{m}$ is 'large' and the closure of an open subset. Contribution to $|A \cap \mathcal{L}|$ due to the 'bulk' far from the boundary is 'roughly'

$$
\sum_{a \in \text { bulk }} \frac{\operatorname{vol} \Delta}{m!\omega_{m}} \sim \frac{\mu_{m} A}{m!\omega_{m}}
$$

The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^{m}$

$$
P(A):=\sum_{i=0}^{m} \frac{\mu_{i}(A)}{i!\omega_{i}}
$$

The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^{m}$

$$
P(A):=\sum_{i=0}^{m} \frac{\mu_{i}(A)}{i!\omega_{i}}=\frac{\mu_{m} A}{m!\omega_{m}}+\cdots+\frac{\mu_{2} A}{2 \pi}+\frac{\mu_{1} A}{2}+\chi A .
$$

The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^{m}$

$$
P(A):=\sum_{i=0}^{m} \frac{\mu_{i}(A)}{i!\omega_{i}}=\frac{\mu_{m} A}{m!\omega_{m}}+\cdots+\frac{\mu_{2} A}{2 \pi}+\frac{\mu_{1} A}{2}+\chi A .
$$

Let $\ddot{A} \subset A$ mean a finite subset.

The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^{m}$

$$
P(A):=\sum_{i=0}^{m} \frac{\mu_{i}(A)}{i!\omega_{i}}=\frac{\mu_{m} A}{m!\omega_{m}}+\cdots+\frac{\mu_{2} A}{2 \pi}+\frac{\mu_{1} A}{2}+\chi A .
$$

Let $\ddot{A} \subset A$ mean a finite subset.
Guess.

The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^{m}$

$$
P(A):=\sum_{i=0}^{m} \frac{\mu_{i}(A)}{i!\omega_{i}}=\frac{\mu_{m} A}{m!\omega_{m}}+\cdots+\frac{\mu_{2} A}{2 \pi}+\frac{\mu_{1} A}{2}+\chi A .
$$

Let $\ddot{A} \subset A$ mean a finite subset.
Guess.

- For \ddot{A} a reasonable approximation: $|\ddot{A}| \simeq|A|$.

The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^{m}$

$$
P(A):=\sum_{i=0}^{m} \frac{\mu_{i}(A)}{i!\omega_{i}}=\frac{\mu_{m} A}{m!\omega_{m}}+\cdots+\frac{\mu_{2} A}{2 \pi}+\frac{\mu_{1} A}{2}+\chi A .
$$

Let $\ddot{A} \subset A$ mean a finite subset.
Guess.

- For \ddot{A} a reasonable approximation: $|\ddot{A}| \simeq|A|$.
- For A large and closure of an open set: $|\ddot{A}| \simeq P(A)$ [bulk approximation].

The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^{m}$

$$
P(A):=\sum_{i=0}^{m} \frac{\mu_{i}(A)}{i!\omega_{i}}=\frac{\mu_{m} A}{m!\omega_{m}}+\cdots+\frac{\mu_{2} A}{2 \pi}+\frac{\mu_{1} A}{2}+\chi A .
$$

Let $\ddot{A} \subset A$ mean a finite subset.
Guess.

- For \ddot{A} a reasonable approximation: $|\ddot{A}| \simeq|A|$.
- For A large and closure of an open set: $|\ddot{A}| \simeq P(A)$ [bulk approximation].

The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^{m}$

$$
P(A):=\sum_{i=0}^{m} \frac{\mu_{i}(A)}{i!\omega_{i}}=\frac{\mu_{m} A}{m!\omega_{m}}+\cdots+\frac{\mu_{2} A}{2 \pi}+\frac{\mu_{1} A}{2}+\chi A .
$$

Let $\ddot{A} \subset A$ mean a finite subset.
Guess.

- For \ddot{A} a reasonable approximation: $|\ddot{A}| \simeq|A|$.
- For A large and closure of an open set: $|\ddot{A}| \simeq P(A)$ [bulk approximation]. Test the guess.

The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^{m}$

$$
P(A):=\sum_{i=0}^{m} \frac{\mu_{i}(A)}{i!\omega_{i}}=\frac{\mu_{m} A}{m!\omega_{m}}+\cdots+\frac{\mu_{2} A}{2 \pi}+\frac{\mu_{1} A}{2}+\chi A .
$$

Let $\ddot{A} \subset A$ mean a finite subset.
Guess.

- For \ddot{A} a reasonable approximation: $|\ddot{A}| \simeq|A|$.
- For A large and closure of an open set: $|\ddot{A}| \simeq P(A)$ [bulk approximation].

Test the guess.

- Pick some simple subset A in \mathbb{R}^{2} or \mathbb{R}^{3} and a scale factor $t>0$.

The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^{m}$

$$
P(A):=\sum_{i=0}^{m} \frac{\mu_{i}(A)}{i!\omega_{i}}=\frac{\mu_{m} A}{m!\omega_{m}}+\cdots+\frac{\mu_{2} A}{2 \pi}+\frac{\mu_{1} A}{2}+\chi A .
$$

Let $\ddot{A} \subset A$ mean a finite subset.
Guess.

- For \ddot{A} a reasonable approximation: $|\ddot{A}| \simeq|A|$.
- For A large and closure of an open set: $|\ddot{A}| \simeq P(A)$ [bulk approximation].

Test the guess.

- Pick some simple subset A in \mathbb{R}^{2} or \mathbb{R}^{3} and a scale factor $t>0$.
- Calculate $P(t A)$.

The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^{m}$

$$
P(A):=\sum_{i=0}^{m} \frac{\mu_{i}(A)}{i!\omega_{i}}=\frac{\mu_{m} A}{m!\omega_{m}}+\cdots+\frac{\mu_{2} A}{2 \pi}+\frac{\mu_{1} A}{2}+\chi A .
$$

Let $\ddot{A} \subset A$ mean a finite subset.
Guess.

- For \ddot{A} a reasonable approximation: $|\ddot{A}| \simeq|A|$.
- For A large and closure of an open set: $|\ddot{A}| \simeq P(A)$ [bulk approximation]. Test the guess.
- Pick some simple subset A in \mathbb{R}^{2} or \mathbb{R}^{3} and a scale factor $t>0$.
- Calculate $P(t A)$.
- Get a computer to calculate $|t \ddot{A}|$ for an approximation \ddot{A}.

The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^{m}$

$$
P(A):=\sum_{i=0}^{m} \frac{\mu_{i}(A)}{i!\omega_{i}}=\frac{\mu_{m} A}{m!\omega_{m}}+\cdots+\frac{\mu_{2} A}{2 \pi}+\frac{\mu_{1} A}{2}+\chi A .
$$

Let $\ddot{A} \subset A$ mean a finite subset.
Guess.

- For \ddot{A} a reasonable approximation: $|\ddot{A}| \simeq|A|$.
- For A large and closure of an open set: $|\ddot{A}| \simeq P(A)$ [bulk approximation]. Test the guess.
- Pick some simple subset A in \mathbb{R}^{2} or \mathbb{R}^{3} and a scale factor $t>0$.
- Calculate $P(t A)$.
- Get a computer to calculate $|t \ddot{A}|$ for an approximation \ddot{A}.
- Compare the two!

The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^{m}$

$$
P(A):=\sum_{i=0}^{m} \frac{\mu_{i}(A)}{i!\omega_{i}}=\frac{\mu_{m} A}{m!\omega_{m}}+\cdots+\frac{\mu_{2} A}{2 \pi}+\frac{\mu_{1} A}{2}+\chi A .
$$

Let $\ddot{A} \subset A$ mean a finite subset.
Guess.

- For \ddot{A} a reasonable approximation: $|\ddot{A}| \simeq|A|$.
- For A large and closure of an open set: $|\ddot{A}| \simeq P(A)$ [bulk approximation]. Test the guess.
- Pick some simple subset A in \mathbb{R}^{2} or \mathbb{R}^{3} and a scale factor $t>0$.
- Calculate $P(t A)$.
- Get a computer to calculate $|t \ddot{A}|$ for an approximation \ddot{A}.
- Compare the two!
- Repeat.

Some calculations

Squares:

Cubes:

Discs:

Annuli:

Some calculations

Squares:

Cubes:

Discs:

Annuli:

Fractals: Ternary Cantor sets

$$
T_{\ell}^{0}:=
$$

Fractals: Ternary Cantor sets

$$
T_{\ell}^{1}:=\stackrel{\cdot}{\ell}
$$

Fractals: Ternary Cantor sets

$$
T_{\ell}^{2}:=\stackrel{\leftarrow \cdot}{\ell}
$$

Fractals: Ternary Cantor sets

Fractals: Ternary Cantor sets

The length ℓ ternary Cantor set is the limit of these sets:

Fractals: Ternary Cantor sets

$$
T_{\ell}^{3}:=
$$

The length ℓ ternary Cantor set is the limit of these sets: $T_{\ell}^{k} \rightarrow T_{\ell}$

Fractals: Ternary Cantor sets

$$
T_{\ell}^{3}:=
$$

The length ℓ ternary Cantor set is the limit of these sets: $T_{\ell}^{k} \rightarrow T_{\ell}$ It is easy to calculate the magnitudes of the approximations:

$$
\left|T_{\ell}^{k}\right|=1+\frac{1}{2} \sum_{i=1}^{k} 2^{i} \tanh \left(\frac{\ell}{2 \cdot 3^{i}}\right)+2^{k} \tanh \left(\frac{\ell}{2 \cdot 3^{k}}\right)
$$

Fractals: Ternary Cantor sets

$$
T_{\ell}^{3}:=
$$

The length ℓ ternary Cantor set is the limit of these sets: $T_{\ell}^{k} \rightarrow T_{\ell}$ It is easy to calculate the magnitudes of the approximations:

$$
\left|T_{\ell}^{k}\right| \rightarrow 1+\frac{1}{2} \sum_{i=1}^{\infty} 2^{i} \tanh \left(\frac{\ell}{2 \cdot 3^{i}}\right)
$$

Fractals: Ternary Cantor sets

$$
T_{\ell}^{3}:=
$$

The length ℓ ternary Cantor set is the limit of these sets: $T_{\ell}^{k} \rightarrow T_{\ell}$ It is easy to calculate the magnitudes of the approximations:

$$
\left|T_{\ell}\right|=1+\frac{1}{2} \sum_{i=1}^{\infty} 2^{i} \tanh \left(\frac{\ell}{2 \cdot 3^{i}}\right)
$$

Fractals: Ternary Cantor sets

$$
T_{l}^{3}:=
$$

The length ℓ ternary Cantor set is the limit of these sets: $T_{\ell}^{k} \rightarrow T_{\ell}$ It is easy to calculate the magnitudes of the approximations:

$$
\left|T_{\ell}\right|=f(\ell) \cdot \ell^{\log _{3} 2}+O\left(\ell^{-1}\right) \quad \text { as } \ell \rightarrow \infty
$$

$$
\text { (where } f(3 \ell)=f(\ell) \text { and } f(\ell) \simeq 1.205 \text {.) }
$$

Fractals: Ternary Cantor sets

The length ℓ ternary Cantor set is the limit of these sets: $T_{\ell}^{k} \rightarrow T_{\ell}$ It is easy to calculate the magnitudes of the approximations:

$$
\left|T_{\ell}\right|=f(\ell) \cdot \ell^{\log _{3} 2}+O\left(\ell^{-1}\right) \quad \text { as } \ell \rightarrow \infty
$$

$$
\text { (where } f(3 \ell)=f(\ell) \text { and } f(\ell) \simeq 1.205 \text {.) }
$$

Lemma: Suppse p is a function on $\left\{T_{\ell}\right\}$ then p satisfies the inclusion-exclusion principle if and only if

$$
p\left(T_{\ell}\right)=f(\ell) \cdot \ell^{\log _{3} 2}
$$

for some $f:(0, \infty) \rightarrow \mathbb{R}$ with $f(3 \ell)=f(\ell)$.

Fractals: Ternary Cantor sets

$$
T_{\ell}^{3}:=
$$

The length ℓ ternary Cantor set is the limit of these sets: $T_{\ell}^{k} \rightarrow T_{\ell}$ It is easy to calculate the magnitudes of the approximations:

$$
\left|T_{\ell}\right|=f(\ell) \cdot \ell^{\log _{3} 2}+O\left(\ell^{-1}\right) \quad \text { as } \ell \rightarrow \infty
$$

$$
\text { (where } f(3 \ell)=f(\ell) \text { and } f(\ell) \simeq 1.205 \text {.) }
$$

Euclidean subspaces: summary

Euclidean subspaces: summary

Convex Conjecture: If $K \in \mathbb{R}^{m}$ is a convex set then

$$
|K|=P(K)
$$

Euclidean subspaces: summary

Convex Conjecture: If $K \in \mathbb{R}^{m}$ is a convex set then

$$
|K|=P(K)
$$

Asymptotic Principle: There is a large class \mathcal{C} of compact subsets of Euclidean space and a function $p: \mathcal{C} \rightarrow \mathbb{R}$ which is tractable and interesting, possibly related to valuations, such that for $A \in \mathcal{C}$

$$
|t A| \simeq p(t A) \quad \text { as } t \rightarrow \infty
$$

Euclidean subspaces: summary

Convex Conjecture: If $K \in \mathbb{R}^{m}$ is a convex set then

$$
|K|=P(K)
$$

Asymptotic Principle: There is a large class \mathcal{C} of compact subsets of Euclidean space and a function $p: \mathcal{C} \rightarrow \mathbb{R}$ which is tractable and interesting, possibly related to valuations, such that for $A \in \mathcal{C}$

$$
|t A| \simeq p(t A) \quad \text { as } t \rightarrow \infty
$$

For example

- finite sets of points $[p=$ cardinality $=P$]
- circles $[p=$ half the circumference $=P$]
- finite unions of intervals in the line $[p=P]$
- Cantor sets $\left[p\left(T_{\ell}\right)=f(\ell) \cdot \ell^{\log _{3} 2}\right]$

Euclidean subspaces: summary

Convex Conjecture: If $K \in \mathbb{R}^{m}$ is a convex set then

$$
|K|=P(K)
$$

Asymptotic Principle: There is a large class \mathcal{C} of compact subsets of Euclidean space and a function $p: \mathcal{C} \rightarrow \mathbb{R}$ which is tractable and interesting, possibly related to valuations, such that for $A \in \mathcal{C}$

$$
|t A| \simeq p(t A) \quad \text { as } t \rightarrow \infty
$$

For example

- finite sets of points $[p=$ cardinality $=P$]
- circles $[p=$ half the circumference $=P$]
- finite unions of intervals in the line $[p=P]$
- Cantor sets $\left[p\left(T_{\ell}\right)=f(\ell) \cdot \ell^{\log _{3} 2}\right.$]

Guess: For A the closure of an open set $p(A)=P(A)$.

Measure theoretic approach

Measure theoretic approach

A weight measure for A is a signed measure v such that that

$$
\int_{b \in A} e^{-d(a, b)} d v_{b}=1 \quad \text { for all } a \in A
$$

Measure theoretic approach

A weight measure for A is a signed measure v such that that

$$
\int_{b \in A} e^{-d(a, b)} \mathrm{d} v_{b}=1 \quad \text { for all } a \in A
$$

If a weight measure v exists then the measure magnitude is defined by

$$
\|A\|:=\int_{A} \mathrm{~d} v
$$

Measure theoretic approach

A weight measure for A is a signed measure v such that that

$$
\int_{b \in A} e^{-d(a, b)} \mathrm{d} v_{b}=1 \quad \text { for all } a \in A
$$

If a weight measure v exists then the measure magnitude is defined by

$$
\|A\|:=\int_{A} \mathrm{~d} v
$$

Eg: For $L_{\ell}:=\underset{\ell}{\leftrightarrows}$ a weight measure is $\frac{1}{2}\left(\mu+\delta_{0}+\delta_{\ell}\right)$.

Measure theoretic approach

A weight measure for A is a signed measure v such that that

$$
\int_{b \in A} e^{-d(a, b)} \mathrm{d} v_{b}=1 \quad \text { for all } a \in A
$$

If a weight measure v exists then the measure magnitude is defined by

$$
\|A\|:=\int_{A} \mathrm{~d} v
$$

Eg: For $L_{\ell}:=\rightleftarrows$ a weight measure is $\frac{1}{2}\left(\mu+\delta_{0}+\delta_{\ell}\right)$.
Hence

$$
\left\|L_{\ell}\right\|=\int_{L_{\ell}} \frac{1}{2}\left(\mathrm{~d} \mu+\mathrm{d} \delta_{0}+\mathrm{d} \delta_{\ell}\right)
$$

Measure theoretic approach

A weight measure for A is a signed measure v such that that

$$
\int_{b \in A} e^{-d(a, b)} \mathrm{d} v_{b}=1 \quad \text { for all } a \in A
$$

If a weight measure v exists then the measure magnitude is defined by

$$
\|A\|:=\int_{A} \mathrm{~d} v
$$

Eg: For $L_{\ell}:=\rightleftarrows$ a weight measure is $\frac{1}{2}\left(\mu+\delta_{0}+\delta_{\ell}\right)$.
Hence

$$
\left\|L_{\ell}\right\|=\frac{1}{2}(\ell+1+1)
$$

Measure theoretic approach

A weight measure for A is a signed measure v such that that

$$
\int_{b \in A} e^{-d(a, b)} \mathrm{d} v_{b}=1 \quad \text { for all } a \in A
$$

If a weight measure v exists then the measure magnitude is defined by

$$
\|A\|:=\int_{A} \mathrm{~d} v
$$

Eg: For $L_{\ell}:=\rightleftarrows$ a weight measure is $\frac{1}{2}\left(\mu+\delta_{0}+\delta_{\ell}\right)$.
Hence

$$
\left\|L_{\ell}\right\|=\quad \ell / 2+1
$$

Measure theoretic approach

A weight measure for A is a signed measure v such that that

$$
\int_{b \in A} e^{-d(a, b)} \mathrm{d} v_{b}=1 \quad \text { for all } a \in A
$$

If a weight measure v exists then the measure magnitude is defined by

$$
\|A\|:=\int_{A} \mathrm{~d} v
$$

Eg: For $L_{\ell}:=\rightleftarrows$ a weight measure is $\frac{1}{2}\left(\mu+\delta_{0}+\delta_{\ell}\right)$.
Hence

$$
\left\|L_{\ell}\right\|=\quad \ell / 2+1
$$

Theorem (Meckes): If $A \subset \mathbb{R}^{m}$ and $\|A\|$ exists then $\|A\|=|A|$.

Homogeneous manifolds: measure magnitude

Suppose A a homogeneous metric space and μ an invariant measure. There is weight measure v on A : for any fixed $a \in A$

$$
v:=\frac{\mu}{\int_{b \in A} e^{-d(a, b)} \mathrm{d} \mu_{b}}
$$

Homogeneous manifolds: measure magnitude

Suppose A a homogeneous metric space and μ an invariant measure. There is weight measure v on A : for any fixed $a \in A$

$$
v:=\frac{\mu}{\int_{b \in A} e^{-d(a, b)} \mathrm{d} \mu_{b}} \quad \text { so } \quad\|A\|=\frac{\int_{A} \mathrm{~d} \mu}{\int_{b \in A} e^{-d(a, b)} \mathrm{d} \mu_{b}} .
$$

Homogeneous manifolds: measure magnitude

Suppose A a homogeneous metric space and μ an invariant measure. There is weight measure v on A : for any fixed $a \in A$

$$
v:=\frac{\mu}{\int_{b \in A} e^{-d(a, b)} \mathrm{d} \mu_{b}} \quad \text { so } \quad\|A\|=\frac{\int_{A} \mathrm{~d} \mu}{\int_{b \in A} e^{-d(a, b)} \mathrm{d} \mu_{b}} .
$$

Suppose X is a homogeneous Riemannian manifold.

Homogeneous manifolds: measure magnitude

Suppose A a homogeneous metric space and μ an invariant measure. There is weight measure v on A : for any fixed $a \in A$

$$
v:=\frac{\mu}{\int_{b \in A} e^{-d(a, b)} \mathrm{d} \mu_{b}} \quad \text { so } \quad\|A\|=\frac{\int_{A} \mathrm{~d} \mu}{\int_{b \in A} e^{-d(a, b)} \mathrm{d} \mu_{b}} .
$$

Suppose X is a homogeneous Riemannian manifold.

- It has the geodesic metric.

Homogeneous manifolds: measure magnitude

Suppose A a homogeneous metric space and μ an invariant measure. There is weight measure v on A : for any fixed $a \in A$

$$
v:=\frac{\mu}{\int_{b \in A} e^{-d(a, b)} \mathrm{d} \mu_{b}} \quad \text { so } \quad\|A\|=\frac{\int_{A} \mathrm{~d} \mu}{\int_{b \in A} e^{-d(a, b)} \mathrm{d} \mu_{b}} .
$$

Suppose X is a homogeneous Riemannian manifold.

- It has the geodesic metric.
- It has an invariant measure from the volume form.

Homogeneous manifolds: measure magnitude

Suppose A a homogeneous metric space and μ an invariant measure. There is weight measure v on A : for any fixed $a \in A$

$$
v:=\frac{\mu}{\int_{b \in A} e^{-d(a, b)} \mathrm{d} \mu_{b}} \quad \text { so } \quad\|A\|=\frac{\int_{A} \mathrm{~d} \mu}{\int_{b \in A} e^{-d(a, b)} \mathrm{d} \mu_{b}} .
$$

Suppose X is a homogeneous Riemannian manifold.

- It has the geodesic metric.
- It has an invariant measure from the volume form.

So

$$
\|X\|=\frac{\operatorname{vol}(X)}{\int_{X} e^{-d(a, b)} \mathrm{dvol}_{b}} .
$$

Homogeneous manifolds: spheres

Suppose S_{R}^{n} is the radius R sphere with the geodesic metric.

Homogeneous manifolds: spheres

Suppose S_{R}^{n} is the radius R sphere with the geodesic metric.

$$
\left\|S_{R}^{n}\right\|=\left\{\begin{array}{l}
\frac{2\left(\left(\frac{R}{n-1}\right)^{2}+1\right)\left(\left(\frac{R}{n-3}\right)^{2}+1\right) \ldots\left(\left(\frac{R}{1}\right)^{2}+1\right)}{1+e^{-\pi R}} \\
\frac{\pi R\left(\left(\frac{R}{n-1}\right)^{2}+1\right)\left(\left(\frac{R}{n-3}\right)^{2}+1\right) \ldots\left(\left(\frac{R}{2}\right)^{2}+1\right)}{1-e^{-\pi R}}
\end{array}\right.
$$

for n even
for n odd

Homogeneous manifolds: spheres

Suppose S_{R}^{n} is the radius R sphere with the geodesic metric.

$$
\left\|S_{R}^{n}\right\|= \begin{cases}\frac{2\left(\left(\frac{R}{n-1}\right)^{2}+1\right)\left(\left(\frac{R}{n-3}\right)^{2}+1\right) \ldots\left(\left(\frac{R}{1}\right)^{2}+1\right)}{1+e^{-\pi R}} & \text { for } n \text { even } \\ \frac{\pi R\left(\left(\frac{R}{n-1}\right)^{2}+1\right)\left(\left(\frac{R}{n-3}\right)^{2}+1\right) \ldots\left(\left(\frac{R}{2}\right)^{2}+1\right)}{1-e^{-\pi R}} & \text { for } n \text { odd }\end{cases}
$$

Theorem (Meckes): $\left\|S_{R}^{n}\right\|=\left|S_{R}^{n}\right|$.

Homogeneous manifolds: spheres

Suppose S_{R}^{n} is the radius R sphere with the geodesic metric.

$$
\left\|S_{R}^{n}\right\|= \begin{cases}\frac{2\left(\left(\frac{R}{n-1}\right)^{2}+1\right)\left(\left(\frac{R}{n-3}\right)^{2}+1\right) \ldots\left(\left(\frac{R}{1}\right)^{2}+1\right)}{1+e^{-\pi R}} & \text { for } n \text { even } \\ \frac{\pi R\left(\left(\frac{R}{n-1}\right)^{2}+1\right)\left(\left(\frac{R}{n-3}\right)^{2}+1\right) \ldots\left(\left(\frac{R}{2}\right)^{2}+1\right)}{1-e^{-\pi R}} & \text { for } n \text { odd }\end{cases}
$$

Homogeneous manifolds: spheres

Suppose S_{R}^{n} is the radius R sphere with the geodesic metric.

$$
\left\|S_{R}^{n}\right\|= \begin{cases}\frac{2\left(\left(\frac{R}{n-1}\right)^{2}+1\right)\left(\left(\frac{R}{n-3}\right)^{2}+1\right) \ldots\left(\left(\frac{R}{1}\right)^{2}+1\right)}{1+e^{-\pi R}} & \text { for } n \text { even } \\ \frac{\pi R\left(\left(\frac{R}{n-1}\right)^{2}+1\right)\left(\left(\frac{R}{n-3}\right)^{2}+1\right) \ldots\left(\left(\frac{R}{2}\right)^{2}+1\right)}{1-e^{-\pi R}} & \text { for } n \text { odd }\end{cases}
$$

Homogeneous manifolds: spheres

Suppose S_{R}^{n} is the radius R sphere with the geodesic metric.

$$
\begin{array}{r}
\left\|S_{R}^{n}\right\|=\frac{\mu_{n}\left(S_{R}^{n}\right)}{n!\omega_{n}}+0+\left[\frac{(n+1)}{3(n-1)}\right] \frac{\mu_{n-2}\left(S_{R}^{n}\right)}{(n-2)!\omega_{n-2}}+0+\cdots+\chi\left(S_{R}^{n}\right) \\
+O\left(R^{-1}\right) \quad \text { as } R \rightarrow \infty
\end{array}
$$

Homogeneous manifolds: asymptotics

Suppose X^{n} is a homogeneous Riemannian manifold, $t>0$.

$$
\|t X\|=\frac{\operatorname{vol}(t X)}{\int_{X} e^{-t d(a, b)} \mathrm{dvol}_{b}}
$$

Homogeneous manifolds: asymptotics

Suppose X^{n} is a homogeneous Riemannian manifold, $t>0$.

$$
\|t X\|=\frac{\operatorname{vol}(t X)}{\int_{X} e^{-t d(a, b)} \mathrm{dvol}_{b}}
$$

Key points:

Homogeneous manifolds: asymptotics

Suppose X^{n} is a homogeneous Riemannian manifold, $t>0$.

$$
\|t X\|=\frac{\operatorname{vol}(t X)}{\int_{X} e^{-t d(a, b)} \mathrm{dvol}_{b}}
$$

Key points:

- The scalar curvature $\tau(x)$ measures the lack of 'stuff' near x.

Homogeneous manifolds: asymptotics

Suppose X^{n} is a homogeneous Riemannian manifold, $t>0$.

$$
\|t X\|=\frac{\operatorname{vol}(t X)}{\int_{X} e^{-t d(a, b)} \mathrm{dvol}_{b}}
$$

Key points:

- The scalar curvature $\tau(x)$ measures the lack of 'stuff' near x.
- $\mu_{n-2}(X)=\frac{1}{4 \pi} \int_{X} \tau(x) \mathrm{dvol}$

Homogeneous manifolds: asymptotics

Suppose X^{n} is a homogeneous Riemannian manifold, $t>0$.

$$
\|t X\|=\frac{\mu_{n}(t X)}{n!\omega_{n}}+\frac{(n+1)}{3(n-1)} \frac{\mu_{n-2}(t X)}{(n-2)!\omega_{n-2}}+O\left(t^{n-4}\right), \quad \text { as } t \rightarrow \infty
$$

Key points:

- The scalar curvature $\tau(x)$ measures the lack of 'stuff' near x.
- $\mu_{n-2}(X)=\frac{1}{4 \pi} \int_{X} \tau(x) \mathrm{dvol}$

Homogeneous manifolds: asymptotics

Suppose X^{n} is a homogeneous Riemannian manifold, $t>0$.

$$
\|t X\|=\frac{\mu_{n}(t X)}{n!\omega_{n}}+\frac{(n+1)}{3(n-1)} \frac{\mu_{n-2}(t X)}{(n-2)!\omega_{n-2}}+O\left(t^{n-4}\right), \quad \text { as } t \rightarrow \infty
$$

Key points:

- The scalar curvature $\tau(x)$ measures the lack of 'stuff' near x.
- $\mu_{n-2}(X)=\frac{1}{4 \pi} \int_{X} \tau(x) \mathrm{dvol}$

For example
Suppose Σ is a homogeneous Riemannian 2-sphere or 2-torus

$$
\|t \Sigma\|=\frac{\operatorname{Area}(t \Sigma)}{2 \pi}+\chi(t \Sigma)+O\left(t^{-2}\right) \quad \text { as } t \rightarrow \infty .
$$

