Magnitude of Metric Spaces II

Tom Leinster & Simon Willerton
Universities of Glasgow & Sheffield

Integral Geometry and Valuation Theory, CRM Barcelona
8th September 2010
Weighting and magnitude

Recall:

- Suppose A is a finite metric space.

A weighting is a function $w: A \to \mathbb{R}$ such that

$$\sum_{b \in A} e^{-d(a, b)} w_b = 1 \text{ for all } a \in A.$$

If a weighting exists then the magnitude is given by

$$|A| := \sum_{a \in A} w_a.$$

Think: Each $a \in A$ is an organism;
- wishes to be at temperature 1;
- generates w_a amount of heat;
- experiences heat from b as $e^{-d(a, b)} w_b$.

$1/12$
Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A **weighting** is a function $w : A \to \mathbb{R}$ such that

$$
\sum_{b \in A} e^{-d(a,b)} w_b = 1 \quad \text{for all } a \in A.
$$
Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A weighting is a function $w : A \rightarrow \mathbb{R}$ such that
 \[\sum_{b \in A} e^{-d(a,b)} w_b = 1 \quad \text{for all } a \in A. \]
- If a weighting exists then the magnitude is given by
 \[|A| := \sum_a w_a. \]
Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A weighting is a function $w : A \rightarrow \mathbb{R}$ such that

$$\sum_{b \in A} e^{-d(a,b)} w_b = 1 \quad \text{for all } a \in A.$$

- If a weighting exists then the magnitude is given by

$$|A| := \sum_{a} w_a.$$

Think: Each $a \in A$
Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A weighting is a function $w: A \rightarrow \mathbb{R}$ such that
 \[
 \sum_{b \in A} e^{-d(a,b)} w_b = 1 \quad \text{for all } a \in A.
 \]
- If a weighting exists then the magnitude is given by
 \[
 |A| := \sum_{a} w_a.
 \]

Think: Each $a \in A$

- is an organism;
Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A weighting is a function $w: A \to \mathbb{R}$ such that

$$\sum_{b \in A} e^{-d(a,b)} w_b = 1 \quad \text{for all } a \in A.$$

- If a weighting exists then the magnitude is given by

$$|A| := \sum_{a} w_a.$$

Think: Each $a \in A$

- is an organism;
- wishes to be at temperature 1;
Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A weighting is a function $w: A \rightarrow \mathbb{R}$ such that
 $$\sum_{b \in A} e^{-d(a,b)}w_b = 1$$ for all $a \in A$.
- If a weighting exists then the magnitude is given by
 $$|A| := \sum_{a} w_a.$$

Think: Each $a \in A$

- is an organism;
- wishes to be at temperature 1;
- generates w_a amount of heat;
Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A weighting is a function $w : A \rightarrow \mathbb{R}$ such that
 \[\sum_{b \in A} e^{-d(a,b)} w_b = 1 \quad \text{for all } a \in A. \]
- If a weighting exists then the magnitude is given by
 \[|A| := \sum_{a} w_a. \]

Think: Each $a \in A$

- is an organism;
- wishes to be at temperature 1;
- generates w_a amount of heat;
- experiences heat from b as $e^{-d(a,b)} w_b$.
Weighting and magnitude

Recall:

▶ Suppose A is a finite metric space.
▶ A weighting is a function $w: A \rightarrow \mathbb{R}$ such that

$$\sum_{b \in A} e^{-d(a,b)} w_b = 1 \quad \text{for all } a \in A.$$

▶ If a weighting exists then the magnitude is given by

$$|A| := \sum_a w_a.$$

Think: Each $a \in A$

▶ is an organism;
▶ wishes to be at temperature 1;
▶ generates w_a amount of heat;
▶ experiences heat from b as $e^{-d(a,b)} w_b$.
Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A weighting is a function $w : A \rightarrow \mathbb{R}$ such that
 \[
 \sum_{b \in A} e^{-d(a,b)} w_b = 1 \quad \text{for all } a \in A.
 \]
- If a weighting exists then the magnitude is given by
 \[
 |A| := \sum_{a} w_a.
 \]

Think: Each $a \in A$

- is an organism;
- wishes to be at temperature 1;
- generates w_a amount of heat;
- experiences heat from b as $e^{-d(a,b)} w_b$.
Weighting and magnitude

Recall:

- Suppose A is a finite metric space.
- A weighting is a function $w : A \rightarrow \mathbb{R}$ such that
 \[
 \sum_{b \in A} e^{-d(a,b)} w_b = 1 \quad \text{for all } a \in A.
 \]
- If a weighting exists then the magnitude is given by
 \[
 |A| := \sum_a w_a.
 \]

Think: Each $a \in A$

- is an organism;
- wishes to be at temperature 1;
- generates w_a amount of heat;
- experiences heat from b as $e^{-d(a,b)} w_b$.
Recall: Infinite spaces and intervals

If A is an infinite metric space define

$$|A| := \sup\left\{ |\tilde{A}| : \tilde{A} \subset A \text{ finite} \right\}$$
Recall: Infinite spaces and intervals

If A is an infinite metric space define

$$|A| := \sup\left\{ |\tilde{A}| : \tilde{A} \subset A \text{ finite} \right\}$$

For example

$$|\ell| = \ell/2 + 1$$
Recall: Infinite spaces and intervals

If A is an infinite metric space define

$$|A| := \sup \left\{ |\bar{A}| : \bar{A} \subset A \text{ finite} \right\}$$

For example

$$|\ell/2 + 1| = \ell/2 + 1$$

Theorem (Leinster et al.): If $\bar{A} \subset \mathbb{R}^m$ is finite then $|\bar{A}|$ exists.
Recall: Infinite spaces and intervals

If A is an infinite metric space define

$$|A| := \sup\left\{ |\bar{A}| \mid \bar{A} \subset A \text{ finite} \right\}$$

For example

$$|\ell| = \ell/2 + 1$$

Theorem (Leinster et al.): If $\bar{A} \subset \mathbb{R}^m$ is finite then $|\bar{A}|$ exists.

Theorem (Meckes): Suppose $A \subset \mathbb{R}^m$.
If $\{\bar{A}_i\}$ is a sequence of finite subsets of A with $\bar{A}_i \to A$ then $|A_i| \to |A|$.
Homogeneous spaces and circles

Lemma (Speyer): Suppose A is a homogeneous metric space. There is a constant weighting w: for any fixed $a_0 \in A$

$$w := \frac{1}{\sum_{a \in A} e^{-d(a_0, a)}}$$

so

$$|A| = \frac{\#A}{\sum_{a \in A} e^{-d(a_0, a)}}$$

For example

$$|C_n^\ell| \to \ell/2 \int_0^1 e^{-\ell s} ds \left[n \to \infty \right]$$

So

$$|S_1^\ell| = \frac{\ell/2}{\int_0^1 e^{-\ell s} ds} \sim \frac{\ell/2}{\ell - 2} \left[\ell \to \infty \right]$$
Homogeneous spaces and circles

Lemma (Speyer): Suppose A is a **homogeneous** metric space. There is a constant weighting w: for any fixed $a_0 \in A$

\[
w := \frac{1}{\sum_{a \in A} e^{-d(a_0, a)}}
\]

so \(|A| = \frac{\#A}{\sum_{a \in A} e^{-d(a_0, a)}}\)

For example

\[
|C^n_\ell| = \frac{n}{\sum_{a \in C^n_\ell} e^{-d(a_0, a)}}
\]

$C^n_\ell := \ldots$
Homogeneous spaces and circles

Lemma (Speyer): Suppose A is a homogeneous metric space. There is a constant weighting w: for any fixed $a_0 \in A$

$$w := \frac{1}{\sum_{a \in A} e^{-d(a_0, a)}}$$

so

$$|A| = \frac{\#A}{\sum_{a \in A} e^{-d(a_0, a)}}$$

For example

$$|C^n_\ell| = \frac{n}{\sum_{a \in C^n_\ell} e^{-d(a_0, a)}}$$

$$C^n_\ell := \begin{array}{c} \text{n points} \
\end{array}$$
Homogeneous spaces and circles

Lemma (Speyer): Suppose A is a homogeneous metric space. There is a constant weighting w: for any fixed $a_0 \in A$

$$w := \frac{1}{\sum_{a \in A} e^{-d(a_0, a)}}$$

so

$$|A| = \frac{\#A}{\sum_{a \in A} e^{-d(a_0, a)}}$$

For example

$$|C_\ell^n| = \frac{n}{\sum_{a \in C_\ell^n} e^{-d(a_0, a)}}$$

$$C_\ell^n := \text{n points}$$
Homogeneous spaces and circles

Lemma (Speyer): Suppose A is a homogeneous metric space. There is a constant weighting w: for any fixed $a_0 \in A$

$$w := \frac{1}{\sum_{a \in A} e^{-d(a_0, a)}} \quad \text{so} \quad |A| = \frac{\#A}{\sum_{a \in A} e^{-d(a_0, a)}}$$

For example

$$|C_\ell^n| \to \frac{\ell/2}{\int_0^1 e^{-\ell d(s)} ds} \quad [n \to \infty] \quad C_\ell^n := \begin{array}{c} \text{points} \\
\ell
\end{array}$$
Homogeneous spaces and circles

Lemma (Speyer): Suppose A is a homogeneous metric space. There is a constant weighting w: for any fixed $a_0 \in A$

$$w := \frac{1}{\sum_{a \in A} e^{-d(a_0, a)}}$$

so

$$|A| = \frac{\# A}{\sum_{a \in A} e^{-d(a_0, a)}}$$

For example

$$|C_n^\ell| \rightarrow \frac{\ell/2}{\int_0^1 e^{-\ell d(s)} \, ds} \quad [n \rightarrow \infty]$$

$$C_n^\ell := \text{n points}$$

So

$$|S_1^\ell| = \frac{\ell/2}{\int_0^1 e^{-\ell d(s)} \, ds}$$
Homogeneous spaces and circles

Lemma (Speyer): Suppose A is a homogeneous metric space. There is a constant weighting w: for any fixed $a_0 \in A$

$$w := \frac{1}{\sum_{a \in A} e^{-d(a_0, a)}}$$

so

$$|A| = \frac{\#A}{\sum_{a \in A} e^{-d(a_0, a)}}$$

For example

$$|C_n^\ell| \to \frac{\ell/2}{\int_0^1 e^{-\ell d(s)} \text{d}s} \quad [n \to \infty] \quad C_n^\ell := \begin{array}{c} \text{n points} \\
\end{array}$$

So

$$|S_1^\ell| = \frac{\ell/2}{\int_0^1 e^{-\ell d(s)} \text{d}s}$$
Homogeneous spaces and circles

Lemma (Speyer): Suppose A is a **homogeneous** metric space. There is a constant weighting w: for any fixed $a_0 \in A$

\[
w := \frac{1}{\sum_{a \in A} e^{-d(a_0, a)}} \quad \text{so} \quad |A| = \frac{\#A}{\sum_{a \in A} e^{-d(a_0, a)}}
\]

For example

\[
|C_n\ell| \to \frac{\ell/2}{\int_0^1 e^{-\ell d(s)} \, ds} \quad [n \to \infty]
\]

So

\[
|S_1\ell| = \frac{\ell/2}{\int_0^1 e^{-\ell d(s)} \, ds} \\
\sim \ell/2 + O(\ell^{-2}) \quad [\ell \to \infty]
\]
Approximating a square

We don’t know how to calculate the magnitude of subsets of \mathbb{R}^2.
Approximating a square

We don’t know how to calculate the magnitude of subsets of \mathbb{R}^2. Approximate with a finite subset . . .
Approximating a square

We don’t know how to calculate the magnitude of subsets of \mathbb{R}^2. Approximate with a finite subset and get Maple to calculate a weighting.
Approximating a square

We don’t know how to calculate the magnitude of subsets of \mathbb{R}^2. Approximate with a finite subset and get maple to calculate a weighting.
Bulk approximation heuristic

Let \mathcal{L} be a ‘small’ lattice in \mathbb{R}^m.

$$w = \sum_{a \in \mathcal{L}} \exp\left(-d(0,a)\right) \approx \int_{x \in \mathbb{R}^m} \exp(-|x|) \, \text{dvol} = \omega_m$$

Suppose $A \subset \mathbb{R}^m$ is ‘large’ and the closure of an open subset. Contribution to $|A \cap \mathcal{L}|$ due to the ‘bulk’ far from the boundary is ‘roughly’

$$\sum_{a \in \text{bulk}} \omega_m \sim m^{5/12}$$
Bulk approximation heuristic

Let \mathcal{L} be a ‘small’ lattice in \mathbb{R}^m. Homogeneous so has a weighting.
Bulk approximation heuristic

Let \(\mathcal{L} \) be a ‘small’ lattice in \(\mathbb{R}^m \). Homogeneous so has a weighting.

\[
w = \frac{1}{\sum_{a \in \mathcal{L}} e^{-d(0,a)}}
\]
Bulk approximation heuristic

Let \mathcal{L} be a ‘small’ lattice in \mathbb{R}^m. Homogeneous so has a weighting.

$$w = \frac{\text{vol} \Delta}{\sum_{a \in \mathcal{L}} e^{-d(0,a)} \text{vol} \Delta}$$

Suppose $A \subset \mathbb{R}^m$ is ‘large’ and the closure of an open subset. Contribution to $|A \cap \mathcal{L}|$ due to the ‘bulk’ far from the boundary is ‘roughly’

$$\sum a \in \text{bulk} \text{vol} \Delta \approx m^{5/12}$$
Bulk approximation heuristic

Let \(\mathcal{L} \) be a ‘small’ lattice in \(\mathbb{R}^m \). Homogeneous so has a weighting.

\[
w = \frac{\text{vol } \Delta}{\sum_{a \in \mathcal{L}} e^{-d(0,a)} \text{vol } \Delta} \approx \frac{\text{vol } \Delta}{\int_{x \in \mathbb{R}^m} e^{-|x|} \text{dvol}}
\]
Bulk approximation heuristic

Let \(\mathcal{L} \) be a ‘small’ lattice in \(\mathbb{R}^m \). Homogeneous so has a weighting.

\[
w = \frac{\text{vol } \Delta}{\sum_{a \in \mathcal{L}} e^{-d(0,a)} \text{vol } \Delta} \approx \frac{\text{vol } \Delta}{\int_{x \in \mathbb{R}^m} e^{-|x|} \text{dvol}}
\]

\[
= \frac{\text{vol } \Delta}{m! \omega_m}
\]
Bulk approximation heuristic

Let \mathcal{L} be a ‘small’ lattice in \mathbb{R}^m. Homogeneous so has a weighting.

$$w = \frac{\text{vol} \Delta}{\sum_{a \in \mathcal{L}} e^{-d(0,a)} \text{vol} \Delta} \sim \frac{\text{vol} \Delta}{\int_{x \in \mathbb{R}^m} e^{-|x|} \text{dvol}}$$

$$= \frac{\text{vol} \Delta}{m! \omega_m}$$

Suppose $A \subset \mathbb{R}^m$ is ‘large’ and the closure of an open subset.
Bulk approximation heuristic

Let \mathcal{L} be a ‘small’ lattice in \mathbb{R}^m. Homogeneous so has a weighting.

$$w = \frac{\text{vol} \Delta}{\sum_{a \in \mathcal{L}} e^{-d(0,a)} \text{vol} \Delta} \approx \frac{\text{vol} \Delta}{\int_{x \in \mathbb{R}^m} e^{-|x|} \text{dvol}}$$

$$= \frac{\text{vol} \Delta}{m! \omega_m}$$

Suppose $A \subset \mathbb{R}^m$ is ‘large’ and the closure of an open subset. Contribution to $|A \cap \mathcal{L}|$ due to the ‘bulk’ far from the boundary is ‘roughly’
Bulk approximation heuristic

Let \mathcal{L} be a ‘small’ lattice in \mathbb{R}^m. Homogeneous so has a weighting.

$$w = \frac{\text{vol } \Delta}{\sum_{a \in \mathcal{L}} e^{-d(0,a)} \text{vol } \Delta} \approx \frac{\text{vol } \Delta}{\int_{x \in \mathbb{R}^m} e^{-|x|} \text{dvol}} \approx \frac{\text{vol } \Delta}{m! \omega_m}$$

Suppose $A \subset \mathbb{R}^m$ is ‘large’ and the closure of an open subset. Contribution to $|A \cap \mathcal{L}|$ due to the ‘bulk’ far from the boundary is ‘roughly’

$$\sum_{a \in \text{bulk}} \frac{\text{vol } \Delta}{m! \omega_m}$$
Bulk approximation heuristic

Let \mathcal{L} be a ‘small’ lattice in \mathbb{R}^m. Homogeneous so has a weighting.

$$w = \frac{\text{vol} \Delta}{\sum_{a \in \mathcal{L}} e^{-d(0,a)} \text{vol} \Delta} \approx \frac{\text{vol} \Delta}{\int_{x \in \mathbb{R}^m} e^{-|x|} \text{dvol}} = \frac{\text{vol} \Delta}{m! \omega_m}$$

Suppose $A \subset \mathbb{R}^m$ is ‘large’ and the closure of an open subset. Contribution to $|A \cap \mathcal{L}|$ due to the ‘bulk’ far from the boundary is ‘roughly’

$$\sum_{a \in \text{bulk}} \frac{\text{vol} \Delta}{m! \omega_m} \approx \frac{\text{vol} A}{m! \omega_m}$$
Bulk approximation heuristic

Let \mathcal{L} be a ‘small’ lattice in \mathbb{R}^m. Homogeneous so has a weighting.

$$w = \frac{\text{vol } \Delta}{\sum_{a \in \mathcal{L}} e^{-d(0,a)} \text{vol } \Delta} \approx \frac{\text{vol } \Delta}{\int_{x \in \mathbb{R}^m} e^{-|x|} \text{dvol}}$$

$$= \frac{\text{vol } \Delta}{m! \omega_m}$$

Suppose $A \subset \mathbb{R}^m$ is ‘large’ and the closure of an open subset. Contribution to $|A \cap \mathcal{L}|$ due to the ‘bulk’ far from the boundary is ‘roughly’

$$\sum_{a \in \text{bulk}} \frac{\text{vol } \Delta}{m! \omega_m} \sim \frac{\mu_m A}{m! \omega_m}$$
The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^m$

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \omega_i}$$
The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^m$

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \omega_i} = \frac{\mu_m A}{m! \omega_m} + \cdots + \frac{\mu_2 A}{2\pi} + \frac{\mu_1 A}{2} + \chi A.$$
The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^m$

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \omega_i} = \frac{\mu_m A}{m! \omega_m} + \cdots + \frac{\mu_2 A}{2\pi} + \frac{\mu_1 A}{2} + \chi A.$$

Let $\set{\dd A \subset A$ mean a finite subset.
The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^m$

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \omega_i} = \frac{\mu_mA}{m! \omega_m} + \cdots + \frac{\mu_2A}{2\pi} + \frac{\mu_1A}{2} + \chi A.$$

Let $\bar{A} \subset A$ mean a finite subset.

Guess.
The valuation \(P \)

Define the valuation \(P \) of compact subset \(A \subset \mathbb{R}^m \)

\[
P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \omega_i} = \frac{\mu_m A}{m! \omega_m} + \cdots + \frac{\mu_2 A}{2\pi} + \frac{\mu_1 A}{2} + \chi A.
\]

Let \(\check{A} \subset A \) mean a finite subset.

Guess.

- For \(\check{A} \) a reasonable approximation: \(|\check{A}| \simeq |A| \).
Define the valuation P of compact subset $A \subset \mathbb{R}^m$

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \omega_i} = \frac{\mu_m A}{m! \omega_m} + \cdots + \frac{\mu_2 A}{2\pi} + \frac{\mu_1 A}{2} + \chi A.$$

Let $\tilde{A} \subset A$ mean a finite subset.

Guess.

- For \tilde{A} a reasonable approximation: $|\tilde{A}| \simeq |A|$.
- For A large and closure of an open set: $|\tilde{A}| \simeq P(A)$ [bulk approximation].
The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^m$

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \omega_i} = \frac{\mu_mA}{m! \omega_m} + \cdots + \frac{\mu_2A}{2\pi} + \frac{\mu_1A}{2} + \chi A.$$

Let $\bar{A} \subset A$ mean a finite subset.

Guess.
- For \bar{A} a reasonable approximation: $|\bar{A}| \simeq |A|$.
- For A large and closure of an open set: $|\bar{A}| \simeq P(A)$ [bulk approximation].
The valuation P

Define the **valuation** P of compact subset $A \subset \mathbb{R}^m$

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \omega_i} = \frac{\mu_m A}{m! \omega_m} + \cdots + \frac{\mu_2 A}{2\pi} + \frac{\mu_1 A}{2} + \chi A.$$

Let $\mathcal{A} \subset A$ mean a finite subset.

Guess.

- For \mathcal{A} a reasonable approximation: $|\mathcal{A}| \simeq |A|$.
- For A large and closure of an open set: $|\mathcal{A}| \simeq P(A)$ [bulk approximation].

Test the guess.
The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^m$

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \omega_i} = \frac{\mu_mA}{m! \omega_m} + \cdots + \frac{\mu_2A}{2\pi} + \frac{\mu_1A}{2} + \chi A.$$

Let $\bar{A} \subset A$ mean a finite subset.

Guess.

- For \bar{A} a reasonable approximation: $|\bar{A}| \simeq |A|$.
- For A large and closure of an open set: $|\bar{A}| \simeq P(A)$ [bulk approximation].

Test the guess.

- Pick some simple subset A in \mathbb{R}^2 or \mathbb{R}^3 and a scale factor $t > 0$.

6/12
The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^m$

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \omega_i} = \frac{\mu_mA}{m! \omega_m} + \cdots + \frac{\mu_2A}{2\pi} + \frac{\mu_1A}{2} + \chi A.$$

Let $\bar{A} \subset A$ mean a finite subset.

Guess.
- For \bar{A} a reasonable approximation: $|\bar{A}| \simeq |A|$.
- For A large and closure of an open set: $|\bar{A}| \simeq P(A)$ [bulk approximation].

Test the guess.
- Pick some simple subset A in \mathbb{R}^2 or \mathbb{R}^3 and a scale factor $t > 0$.
- Calculate $P(tA)$.

The valuation \(P \)

Define the valuation \(P \) of compact subset \(A \subset \mathbb{R}^m \)

\[
P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \omega_i} = \frac{\mu_m A}{m! \omega_m} + \cdots + \frac{\mu_2 A}{2 \pi} + \frac{\mu_1 A}{2} + \chi A.
\]

Let \(\tilde{A} \subset A \) mean a finite subset.

Guess.

- For \(\tilde{A} \) a reasonable approximation: \(|\tilde{A}| \simeq |A| \).
- For \(A \) large and closure of an open set: \(|\tilde{A}| \simeq P(A) \) [bulk approximation].

Test the guess.

- Pick some simple subset \(A \) in \(\mathbb{R}^2 \) or \(\mathbb{R}^3 \) and a scale factor \(t > 0 \).
- Calculate \(P(tA) \).
- Get a computer to calculate \(|t\tilde{A}| \) for an approximation \(\tilde{A} \).
The valuation P

Define the **valuation P** of compact subset $A \subset \mathbb{R}^m$

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \omega_i} = \frac{\mu_mA}{m! \omega_m} + \cdots + \frac{\mu_2A}{2\pi} + \frac{\mu_1A}{2} + \chi A.$$

Let $\mathring{A} \subset A$ mean a finite subset.

Guess.
- For \mathring{A} a reasonable approximation: $|\mathring{A}| \simeq |A|$.
- For A large and closure of an open set: $|\mathring{A}| \simeq P(A)$ [bulk approximation].

Test the guess.
- Pick some simple subset A in \mathbb{R}^2 or \mathbb{R}^3 and a scale factor $t > 0$.
- Calculate $P(tA)$.
- Get a computer to calculate $|t\mathring{A}|$ for an approximation \mathring{A}.
- Compare the two!
The valuation P

Define the valuation P of compact subset $A \subset \mathbb{R}^m$

$$P(A) := \sum_{i=0}^{m} \frac{\mu_i(A)}{i! \omega_i} = \frac{\mu_m A}{m! \omega_m} + \cdots + \frac{\mu_2 A}{2\pi} + \frac{\mu_1 A}{2} + \chi A.$$

Let $\bar{A} \subset A$ mean a finite subset.

Guess.

- For \bar{A} a reasonable approximation: $|\bar{A}| \simeq |A|$.
- For A large and closure of an open set: $|\bar{A}| \simeq P(A)$ [bulk approximation].

Test the guess.

- Pick some simple subset A in \mathbb{R}^2 or \mathbb{R}^3 and a scale factor $t > 0$.
- Calculate $P(tA)$.
- Get a computer to calculate $|t\bar{A}|$ for an approximation \bar{A}.
- Compare the two!
- Repeat.
Some calculations

Squares:

Discs:

Cubes:

Annuli:
Some calculations

Squares:

Discs:

Cubes:

Annuli:
Fractals: Ternary Cantor sets

\[T_\ell^0 := \cdot \ell \cdot \]

The length of the ternary Cantor set is the limit of these sets:

\[T_k \ell \rightarrow T_\ell \]

It is easy to calculate the magnitudes of the approximations:

\[|T_k \ell| \quad \text{where} \quad f(3 \ell) = f(\ell) \quad \text{and} \quad f(\ell) \approx 1.205. \]
Fractals: Ternary Cantor sets

\[T^1_\ell := \quad \cdots \quad . \quad \cdots \quad \ell \quad \cdots \quad . \]
Fractals: Ternary Cantor sets

\[T_\ell^2 := \ldots \ldots \ldots \ldots \ldots \]

The length of the ternary Cantor set is the limit of these sets:

\[T_k^\ell \rightarrow T_\ell^\ell \]

It is easy to calculate the magnitudes of the approximations:

\[|T_k^\ell| \] (where \(f(3\ell) = f(\ell) \) and \(f(\ell) \approx 1.205 \).)
Fractals: Ternary Cantor sets

\[T_\ell^3 := \ldots \quad \ldots \quad \ldots \quad \ldots \]
Fractals: Ternary Cantor sets

\[T_\ell^3 := \ldots \ldots \ldots \ldots \ldots \]

The length \(\ell \) ternary Cantor set is the limit of these sets:
The length ℓ ternary Cantor set is the limit of these sets: $T^3_\ell \to T_\ell$
Fractals: Ternary Cantor sets

\[T^3_\ell := \begin{array}{c\ldots c\ldots c\ldots c\ldots c} \ell \end{array} \]

The length \(\ell \) ternary Cantor set is the limit of these sets: \(T^k_\ell \rightarrow T_\ell \)

It is easy to calculate the magnitudes of the approximations:

\[|T^k_\ell| = 1 + \frac{1}{2} \sum_{i=1}^{k} 2^i \tanh \left(\frac{\ell}{2 \cdot 3^i} \right) + 2^k \tanh \left(\frac{\ell}{2 \cdot 3^k} \right) \]
Fractals: Ternary Cantor sets

\[T^3_\ell := \ldots \ldots \ldots \rightarrow \ell \]

The length \(\ell \) ternary Cantor set is the limit of these sets: \(T^k_\ell \rightarrow T_\ell \)

It is easy to calculate the magnitudes of the approximations:

\[|T^k_\ell| \rightarrow 1 + \frac{1}{2} \sum_{i=1}^{\infty} 2^i \tanh \left(\frac{\ell}{2 \cdot 3^i} \right) \]
Fractals: Ternary Cantor sets

\[T_\ell^3 := \cdots \cdots \ell \]

The length \(\ell \) ternary Cantor set is the limit of these sets: \(T_\ell^k \to T_\ell \)

It is easy to calculate the magnitudes of the approximations:

\[
| T_\ell | = 1 + \frac{1}{2} \sum_{i=1}^{\infty} 2^i \tanh \left(\frac{\ell}{2 \cdot 3^i} \right)
\]
Fractals: Ternary Cantor sets

\[T_\ell^3 := \cdots \cdots \cdots \cdots \cdots \cdots \ell \]

The length \(\ell \) ternary Cantor set is the limit of these sets: \(T_\ell^k \to T_\ell \)

It is easy to calculate the magnitudes of the approximations:

\[|T_\ell| = f(\ell) \cdot \ell^{\log_3 2} + O(\ell^{-1}) \quad \text{as } \ell \to \infty \]

(\(f(3\ell) = f(\ell) \) and \(f(\ell) \approx 1.205 \).)
Fractals: Ternary Cantor sets

The length ℓ ternary Cantor set is the limit of these sets: $T^k_\ell \to T_\ell$

It is easy to calculate the magnitudes of the approximations:

$$|T_\ell| = f(\ell) \cdot \ell^\log_3 2 + O(\ell^{-1}) \quad \text{as } \ell \to \infty$$

(where $f(3\ell) = f(\ell)$ and $f(\ell) \simeq 1.205$.)

Lemma: Suppose p is a function on $\{T_\ell\}$ then p satisfies the inclusion-exclusion principle if and only if

$$p(T_\ell) = f(\ell) \cdot \ell^\log_3 2$$

for some $f: (0, \infty) \to \mathbb{R}$ with $f(3\ell) = f(\ell)$.
Fractals: Ternary Cantor sets

\[T_\ell^3 := \ldots \ldots \ldots \rightarrow \ell \]

The length \(\ell \) ternary Cantor set is the limit of these sets: \(T_\ell^k \rightarrow T_\ell \)

It is easy to calculate the magnitudes of the approximations:

\[|T_\ell| = f(\ell) \cdot \ell^{\log_3 2} + O(\ell^{-1}) \quad \text{as } \ell \rightarrow \infty \]

(where \(f(3\ell) = f(\ell) \) and \(f(\ell) \approx 1.205 \).)
Convex Conjecture: If $K \in \mathbb{R}^m$ is a convex set then $|K| = \mathcal{P}(K)$.

Asymptotic Principle: There is a large class C of compact subsets of Euclidean space and a function $p: C \to \mathbb{R}$ which is tractable and interesting, possibly related to valuations, such that for $A \in C$, $|tA| \simeq p(tA)$ as $t \to \infty$.

For example:
- finite sets of points: $p = \text{cardinality} = \mathcal{P}$
- circles: $p = \frac{1}{2} \text{half the circumference} = \mathcal{P}$
- finite unions of intervals in the line: $p = \mathcal{P}$
- Cantor sets: $p(T_\ell) = f(\ell) \cdot \ell \log_2 3$

Guess: For A the closure of an open set $p(A) = \mathcal{P}(A)$.

Euclidean subspaces: summary
Euclidean subspaces: summary

Convex Conjecture: If $K \in \mathbb{R}^m$ is a convex set then

$$|K| = P(K).$$
Euclidean subspaces: summary

Convex Conjecture: If $K \in \mathbb{R}^m$ is a convex set then

$$|K| = P(K).$$

Asymptotic Principle: There is a large class \mathcal{C} of compact subsets of Euclidean space and a function $p: \mathcal{C} \to \mathbb{R}$ which is tractable and interesting, possibly related to valuations, such that for $A \in \mathcal{C}$

$$|tA| \sim p(tA) \quad \text{as } t \to \infty.$$
Euclidean subspaces: summary

Convex Conjecture: If $K \in \mathbb{R}^m$ is a convex set then

$$|K| = P(K).$$

Asymptotic Principle: There is a large class \mathcal{C} of compact subsets of Euclidean space and a function $p: \mathcal{C} \rightarrow \mathbb{R}$ which is tractable and interesting, possibly related to valuations, such that for $A \in \mathcal{C}$

$$|tA| \sim p(tA) \quad \text{as } t \to \infty.$$

For example

- finite sets of points [$p = \text{cardinality} = P$]
- circles [$p = \text{half the circumference} = P$]
- finite unions of intervals in the line [$p = P$]
- Cantor sets [$p(T_{\ell}) = f(\ell) \cdot \ell^{\log_3 2}$]
Euclidean subspaces: summary

Convex Conjecture: If $K \in \mathbb{R}^m$ is a convex set then

$$|K| = P(K).$$

Asymptotic Principle: There is a large class \mathcal{C} of compact subsets of Euclidean space and a function $p: \mathcal{C} \to \mathbb{R}$ which is tractable and interesting, possibly related to valuations, such that for $A \in \mathcal{C}$

$$|tA| \sim p(tA) \quad \text{as } t \to \infty.$$

For example

- finite sets of points [$p = \text{cardinality} = P$]
- circles [$p = \text{half the circumference} = P$]
- finite unions of intervals in the line [$p = P$]
- Cantor sets [$p(T_\ell) = f(\ell) \cdot \ell^{\log_3 2}$]

Guess: For A the closure of an open set $p(A) = P(A)$.
Measure theoretic approach

A weight measure for \(A \) is a signed measure \(\nu \) such that:

\[
\int_{b \in A} e^{-d(a, b)} \, d\nu_b = 1 \quad \text{for all} \quad a \in A.
\]

If a weight measure \(\nu \) exists then the measure magnitude is defined by:

\[
\|A\| := \int_A d\nu.
\]

Eg: For \(L_{\ell} := \ell \quad \frac{1}{2}(\mu + \delta_0 + \delta_{\ell}) \).

Hence:

\[
\|L_{\ell}\| = \int_{L_{\ell}} \frac{1}{2}(d\mu + d\delta_0 + d\delta_{\ell}).
\]

Theorem (Meckes): If \(A \subset \mathbb{R}^m \) and \(\|A\| \) exists then:

\[
\|A\| = |A|.
\]
Measure theoretic approach

A weight measure for A is a signed measure ν such that

$$\int_{b \in A} e^{-d(a,b)} \, d\nu_b = 1 \quad \text{for all } a \in A.$$
Measure theoretic approach

A weight measure for A is a signed measure ν such that that

$$\int_{b \in A} e^{-d(a,b)} \, d\nu_b = 1 \quad \text{for all } a \in A.$$

If a weight measure ν exists then the measure magnitude is defined by

$$\|A\| := \int_A \, d\nu.$$
Measure theoretic approach

A weight measure for A is a signed measure ν such that

$$\int_{b \in A} e^{-d(a,b)} \, d\nu_b = 1 \quad \text{for all } a \in A.$$

If a weight measure ν exists then the measure magnitude is defined by

$$\|A\| := \int_A d\nu.$$

Eg: For $L_\ell := \ell$ a weight measure is $\frac{1}{2}(\mu + \delta_0 + \delta_\ell)$.
Measure theoretic approach

A weight measure for A is a signed measure ν such that that

$$\int_{b \in A} e^{-d(a, b)} \, d\nu_b = 1 \quad \text{for all } a \in A.$$

If a weight measure ν exists then the measure magnitude is defined by

$$\|A\| := \int_A d\nu.$$

Eg: For $L_{\ell} := \ell$, a weight measure is $\frac{1}{2}(\mu + \delta_0 + \delta_\ell)$.

Hence

$$\|L_{\ell}\| = \int_{L_{\ell}} \frac{1}{2}(d\mu + d\delta_0 + d\delta_\ell).$$
Measure theoretic approach

A weight measure for A is a signed measure ν such that that

$$\int_{b \in A} e^{-d(a,b)} \, d\nu_b = 1 \quad \text{for all } a \in A.$$

If a weight measure ν exists then the measure magnitude is defined by

$$\|A\| := \int_A d\nu.$$

\textbf{Eg:} For $L_\ell := \ell \mu + \delta_0 + \delta_\ell$ a weight measure is $\frac{1}{2}(\mu + \delta_0 + \delta_\ell)$.

Hence

$$\|L_\ell\| = \frac{1}{2}(\ell + 1 + 1)$$
Measure theoretic approach

A **weight measure** for \(A \) is a signed measure \(\nu \) such that that

\[
\int_{b \in A} e^{-d(a,b)} \, d\nu_b = 1 \quad \text{for all} \ a \in A.
\]

If a weight measure \(\nu \) exists then the **measure magnitude** is defined by

\[
\| A \| := \int_A d\nu.
\]

Eg: For \(L_\ell := \frac{1}{2}(\mu + \delta_0 + \delta_\ell) \) a weight measure is \(\frac{1}{2}(\mu + \delta_0 + \delta_\ell) \).

Hence

\[
\| L_\ell \| = \ell/2 + 1.
\]
Measure theoretic approach

A weight measure for A is a signed measure ν such that that

$$\int_{b \in A} e^{-d(a,b)} \, d\nu_b = 1 \quad \text{for all } a \in A.$$

If a weight measure ν exists then the measure magnitude is defined by

$$\|A\| := \int_A \, d\nu.$$

Eg: For $L_\ell := \ell \quad \text{a weight measure is } \frac{1}{2}(\mu + \delta_0 + \delta_\ell)$.

Hence

$$\|L_\ell\| = \ell/2 + 1.$$

Theorem (Meckes): If $A \subset \mathbb{R}^m$ and $\|A\|$ exists then $\|A\| = |A|$.
Homogeneous manifolds: measure magnitude

Suppose A a homogeneous metric space and μ an invariant measure. There is weight measure ν on A: for any fixed $a \in A$

$$\nu := \frac{\mu}{\int_{b \in A} e^{-d(a,b)} d\mu_b}$$
Homogeneous manifolds: measure magnitude

Suppose A a homogeneous metric space and μ an invariant measure. There is weight measure ν on A: for any fixed $a \in A$

$$\nu := \frac{\mu}{\int_{b \in A} e^{-d(a,b)} d\mu_b} \quad \text{so} \quad \|A\| = \frac{\int_{A} d\mu}{\int_{b \in A} e^{-d(a,b)} d\mu_b}.$$
Homogeneous manifolds: measure magnitude

Suppose A a homogeneous metric space and μ an invariant measure. There is weight measure ν on A: for any fixed $a \in A$

$$\nu := \frac{\mu}{\int_{b \in A} e^{-d(a,b)} d\mu_b}$$

so

$$\|A\| = \frac{\int_A d\mu}{\int_{b \in A} e^{-d(a,b)} d\mu_b}.$$

Suppose X is a homogeneous Riemannian manifold.
Homogeneous manifolds: measure magnitude

Suppose A a homogeneous metric space and μ an invariant measure. There is weight measure ν on A: for any fixed $a \in A$

$$\nu := \frac{\mu}{\int_{b \in A} e^{-d(a,b)} d\mu_b}$$

so

$$\|A\| = \frac{\int_A d\mu}{\int_{b \in A} e^{-d(a,b)} d\mu_b}.$$

Suppose X is a homogeneous Riemannian manifold.

- It has the geodesic metric.
Homogeneous manifolds: measure magnitude

Suppose A a homogeneous metric space and μ an invariant measure. There is weight measure ν on A: for any fixed $a \in A$

$$\nu := \frac{\mu}{\int_{b \in A} e^{-d(a,b)} \, d\mu_b}$$

so

$$\|A\| = \frac{\int_A d\mu}{\int_{b \in A} e^{-d(a,b)} \, d\mu_b}.$$

Suppose X is a homogeneous Riemannian manifold.

- It has the geodesic metric.
- It has an invariant measure from the volume form.
Suppose A a homogeneous metric space and μ an invariant measure. There is weight measure ν on A: for any fixed $a \in A$

$$
\nu := \frac{\mu}{\int_{b \in A} e^{-d(a, b)} d\mu_b}
$$

so

$$
\|A\| = \frac{\int_A d\mu}{\int_{b \in A} e^{-d(a, b)} d\mu_b}.
$$

Suppose X is a homogeneous Riemannian manifold.

- It has the geodesic metric.
- It has an invariant measure from the volume form.

So

$$
\|X\| = \frac{\text{vol}(X)}{\int_X e^{-d(a, b)} d\text{vol}_b}.
$$
Homogeneous manifolds: spheres

Suppose S^n_R is the radius R sphere with the geodesic metric.
Homogeneous manifolds: spheres

Suppose S^n_R is the radius R sphere with the geodesic metric.

$$\|S^n_R\| = \begin{cases}
\frac{2\left((\frac{R}{n-1})^2 + 1\right)\left((\frac{R}{n-3})^2 + 1\right) \ldots \left((\frac{R}{1})^2 + 1\right)}{1 + e^{-\pi R}} & \text{for } n \text{ even} \\
\frac{\pi R\left((\frac{R}{n-1})^2 + 1\right)\left((\frac{R}{n-3})^2 + 1\right) \ldots \left((\frac{R}{2})^2 + 1\right)}{1 - e^{-\pi R}} & \text{for } n \text{ odd}
\end{cases}$$
Homogeneous manifolds: spheres

Suppose S^n_R is the radius R sphere with the geodesic metric.

\[
\|S^n_R\| = \begin{cases}
\frac{2\left(\left(\frac{R}{n-1}\right)^2 + 1\right)\left(\left(\frac{R}{n-3}\right)^2 + 1\right) \ldots \left(\left(\frac{R}{1}\right)^2 + 1\right)}{1 + e^{-\pi R}} & \text{for } n \text{ even} \\
\frac{\pi R\left(\left(\frac{R}{n-1}\right)^2 + 1\right)\left(\left(\frac{R}{n-3}\right)^2 + 1\right) \ldots \left(\left(\frac{R}{2}\right)^2 + 1\right)}{1 - e^{-\pi R}} & \text{for } n \text{ odd}
\end{cases}
\]

Theorem (Meckes): \(\|S^n_R\| = |S^n_R|\).
Homogeneous manifolds: spheres

Suppose S^n_R is the radius R sphere with the geodesic metric.

$$\|S^n_R\| = \begin{cases} \frac{2\left(\left(\frac{R}{n-1}\right)^2 + 1\right)\left(\left(\frac{R}{n-3}\right)^2 + 1\right) \cdots \left(\left(\frac{R}{1}\right)^2 + 1\right)}{1 + e^{-\pi R}} & \text{for } n \text{ even} \\ \frac{\pi R\left(\left(\frac{R}{n-1}\right)^2 + 1\right)\left(\left(\frac{R}{n-3}\right)^2 + 1\right) \cdots \left(\left(\frac{R}{2}\right)^2 + 1\right)}{1 - e^{-\pi R}} & \text{for } n \text{ odd} \end{cases}$$
Homogeneous manifolds: spheres

Suppose S^n_R is the radius R sphere with the geodesic metric.

$$
\|S^n_R\| = \begin{cases}
2 \left(\left(\frac{R}{n-1} \right)^2 + 1 \right) \left(\left(\frac{R}{n-3} \right)^2 + 1 \right) \ldots \left(\left(\frac{R}{1} \right)^2 + 1 \right) \\
\frac{1}{1 + e^{-\pi R}}
\end{cases}
$$

for n even

$$
\pi R \left(\left(\frac{R}{n-1} \right)^2 + 1 \right) \left(\left(\frac{R}{n-3} \right)^2 + 1 \right) \ldots \left(\left(\frac{R}{2} \right)^2 + 1 \right) \\
\frac{1}{1 - e^{-\pi R}}
$$

for n odd
Homogeneous manifolds: spheres

Suppose S^n_R is the radius R sphere with the geodesic metric.

\[\|S^n_R\| = \frac{\mu_n(S^n_R)}{n! \omega_n} + 0 + \left[\frac{(n+1)}{3(n-1)} \right] \frac{\mu_{n-2}(S^n_R)}{(n-2)! \omega_{n-2}} + 0 + \cdots + \chi(S^n_R) + O(R^{-1}) \quad \text{as } R \to \infty. \]
Homogeneous manifolds: asymptotics

Suppose X^n is a homogeneous Riemannian manifold, $t > 0$.

$$\|tX\| = \frac{\text{vol}(tX)}{\int_X e^{-td(a,b)} \text{dvol}_b}$$
Homogeneous manifolds: asymptotics

Suppose X^n is a homogeneous Riemannian manifold, $t > 0$.

$$\|tX\| = \frac{\text{vol}(tX)}{\int_X e^{-td(a,b)} \, d\text{vol}_b}$$

Key points:

▶ The scalar curvature $\tau(x)$ measures the lack of 'stuff' near x.

▶ $\mu_{n-2}(X) = \frac{1}{4\pi} \int_X \tau(x) \, d\text{vol}$

For example, suppose Σ is a homogeneous Riemannian 2-sphere or 2-torus:

$$\|t\Sigma\| = \frac{\text{Area}(t\Sigma)}{2\pi} + \chi(t\Sigma) + O(t^{-2}) \text{ as } t \to \infty.$$
Homogeneous manifolds: asymptotics

Suppose X^n is a homogeneous Riemannian manifold, $t > 0$.

$$\|tX\| = \frac{\vol(tX)}{\int_X e^{-td(a,b)} \, d\vol_b}$$

Key points:
- The scalar curvature $\tau(x)$ measures the lack of ‘stuff’ near x.

For example, suppose Σ is a homogeneous Riemannian 2-sphere or 2-torus, then

$$\|t\Sigma\| = \frac{\text{Area}(t\Sigma)}{2\pi} + \frac{\chi(t\Sigma)}{4\pi} + O(t^{-2})$$

as $t \to \infty$.

$13/12$
Homogeneous manifolds: asymptotics

Suppose X^n is a homogeneous Riemannian manifold, $t > 0$.

$$\|tX\| = \frac{\text{vol}(tX)}{\int_X e^{-td(a,b)} \text{dvol}_b}$$

Key points:

- The scalar curvature $\tau(x)$ measures the lack of ‘stuff’ near x.

- $\mu_{n-2}(X) = \frac{1}{4\pi} \int_X \tau(x) \text{dvol}$
Homogeneous manifolds: asymptotics

Suppose X^n is a homogeneous Riemannian manifold, $t > 0$.

$$\|tX\| = \frac{\mu_n(tX)}{n! \omega_n} + \frac{(n+1)}{3(n-1)(n-2)!} \frac{\mu_{n-2}(tX)}{\omega_{n-2}} + O(t^{n-4}), \quad \text{as } t \to \infty.$$

Key points:

- The scalar curvature $\tau(x)$ measures the lack of ‘stuff’ near x.

- $\mu_{n-2}(X) = \frac{1}{4\pi} \int_X \tau(x) \, d\text{vol}$
Homogeneous manifolds: asymptotics

Suppose X^n is a homogeneous Riemannian manifold, $t > 0$.

$$
\|tX\| = \frac{\mu_n(tX)}{n! \omega_n} + \frac{(n+1)}{3(n-1)(n-2)!} \frac{\mu_{n-2}(tX)}{\omega_{n-2}} + O(t^{n-4}), \quad \text{as } t \to \infty.
$$

Key points:

- The scalar curvature $\tau(x)$ measures the lack of ‘stuff’ near x.
- $\mu_{n-2}(X) = \frac{1}{4\pi} \int_X \tau(x) \, dvol$

For example

Suppose Σ is a homogeneous Riemannian 2-sphere or 2-torus

$$
\|t\Sigma\| = \frac{\text{Area}(t\Sigma)}{2\pi} + \chi(t\Sigma) + O(t^{-2}) \quad \text{as } t \to \infty.
$$