Magnitude and other measures of metric spaces

Simon Willerton
University of Sheffield

Exploratory meeting on the mathematics of biodiversity

CRM Barcelona
July 2012

Overview

category theory

Overview

Overview

Overview

Overview

"set with distances" = "metric space"

We have

- a set of 'points'
- some notion of distance $0 \leqslant d_{i j} \leqslant \infty$ between the i th and j th points.

"set with distances" = "metric space"

We have

- a set of 'points'
- some notion of distance $0 \leqslant d_{i j} \leqslant \infty$ between the i th and j th points.

For example:

SP

"set with distances" = "metric space"

We have

- a set of 'points'
- some notion of distance $0 \leqslant d_{i j} \leqslant \infty$ between the i th and j th points.

For example:

"set with distances" $=$ "metric space"

We have

- a set of 'points'
- some notion of distance $0 \leqslant d_{i j} \leqslant \infty$ between the i th and j th points.

For example:

Note: not every metric space can be thought of as points in Euclidean space.

Magnitude [Leinster]
Metric space X with similarity matrix $Z_{i j}:=e^{-d_{i j}}$.

Magnitude [Leinster]

Metric space X with similarity matrix $Z_{i j}:=e^{-d_{i j}}$.
Define 'weight' (if possible) $-\infty<w_{i}<\infty$ at each point i so that

$$
\sum_{j} Z_{i j} w_{j}=1 \quad \text { for every } j
$$

Magnitude [Leinster]

Metric space X with similarity matrix $Z_{i j}:=e^{-d_{i j}}$.
Define 'weight' (if possible) $-\infty<w_{i}<\infty$ at each point i so that

$$
\sum_{j} Z_{i j} w_{j}=1 \quad \text { for every } j
$$

Magnitude [Leinster]

Metric space X with similarity matrix $Z_{i j}:=e^{-d_{i j}}$.
Define 'weight' (if possible) $-\infty<w_{i}<\infty$ at each point i so that

$$
\sum_{j} Z_{i j} w_{j}=1 \quad \text { for every } j
$$

Magnitude [Leinster]

Metric space X with similarity matrix $Z_{i j}:=e^{-d_{i j}}$.
Define 'weight' (if possible) $-\infty<w_{i}<\infty$ at each point i so that

$$
\sum_{j} Z_{i j} w_{j}=1 \quad \text { for every } j
$$

Define the magnitude by

$$
|X|=\sum_{i} w_{i}
$$

Magnitude [Leinster]

Metric space X with similarity matrix $Z_{i j}:=e^{-d_{i j}}$.
Define 'weight' (if possible) $-\infty<w_{i}<\infty$ at each point i so that

$$
\sum_{j} Z_{i j} w_{j}=1 \quad \text { for every } j
$$

Define the magnitude by

$$
|X|=\sum_{i} w_{i}
$$

Magnitude [Leinster]

Metric space X with similarity matrix $Z_{i j}:=e^{-d_{i j}}$.
Define 'weight' (if possible) $-\infty<w_{i}<\infty$ at each point i so that

$$
\sum_{j} Z_{i j} w_{j}=1 \quad \text { for every } j
$$

$|X| \sim 1.47$

Define the magnitude by

$$
|X|=\sum_{i} w_{i}
$$

If $Z_{i j}$ is invertible then $|X|=\sum_{i j}\left(Z^{-1}\right)_{i j}$.

Example of scaling

Example of scaling

Example of scaling

Example of scaling

As any space X is scaled bigger and bigger $|X| \rightarrow N$.

Example of bad metric space

Example of bad metric space

Example of bad metric space

Many metric spaces are better behaved than this.

Example of bad metric space

Many metric spaces are better behaved than this.
If Z is positive definite then $|X|$ is defined.
For example, if X is a subset of Euclidean space then $|X|$ is defined.

Diversity measures [Leinster, Cobbold]

Model our community using

- a metric space X with similarity matrix $Z_{i j}$
- a probability (or relative abundance) p_{i} at the i th point.

Diversity measures [Leinster, Cobbold]

Model our community using

- a metric space X with similarity matrix $Z_{i j}$
- a probability (or relative abundance) p_{i} at the i th point.

Effective number of species:

$$
{ }^{q} D^{Z}(\mathbf{p}):= \begin{cases}\left(\sum_{i: p_{i}>0} p_{i}(Z \mathbf{p})_{i}^{q-1}\right)^{\frac{1}{1-q}} & q \neq 1, \\ \prod_{i: p_{i}>0}(Z \mathbf{p})_{i}^{-p_{i}} & q=1, \\ \min _{i: p_{i}>0} \frac{1}{(Z \mathbf{p})_{i}} & q=\infty .\end{cases}
$$

Diversity measures [Leinster, Cobbold]

Model our community using

- a metric space X with similarity matrix $Z_{i j}$
- a probability (or relative abundance) p_{i} at the i th point.

Effective number of species:

Diversity measures [Leinster, Cobbold]

Model our community using

- a metric space X with similarity matrix $Z_{i j}$
- a probability (or relative abundance) p_{i} at the ith point.

Effective number of species:

q
Recover various other measures of diversity using this.
For example, obtain Hill numbers when $d_{i j}=\infty\left(\right.$ i.e. $\left.Z_{i j}=0\right)$ for $i \neq j$.

Leinster's maximazing result

Theorem
Let X be a symmetric metric space. So Z is symmetric.

Leinster's maximazing result

Theorem

Let X be a symmetric metric space. So Z is symmetric.

- If Z is positive definite and there is a weighting with non-negative weights ($w_{i} \geqslant 0$), then

$$
D_{\max }(Z)=|X|
$$

i.e., the magnitude is the maximum diversity for all q, and normalizing the weights gives the maximizing probability distribution

$$
p_{i}:=\frac{w_{i}}{\sum w_{i}}
$$

Leinster's maximazing result

Theorem

Let X be a symmetric metric space. So Z is symmetric.

- If Z is positive definite and there is a weighting with non-negative weights ($w_{i} \geqslant 0$), then

$$
D_{\max }(Z)=|X|
$$

i.e., the magnitude is the maximum diversity for all q, and normalizing the weights gives the maximizing probability distribution

$$
p_{i}:=\frac{w_{i}}{\sum w_{i}}
$$

- Otherwise

$$
D_{\max }(Z)=\max _{Y \subset X \& w_{i}>0}|Y| .
$$

Summary of magnitude $|X|$

- Mathematically natural (if mysterious), c.f. category theory.
- Related to biodiversity.
- Seemingly related to geometry in Euclidean space.
- Can behave rather weirdly at times.

Other size measures of metric spaces

- Get Hill Numbers by giving a probability space a dull metric.
- Get numbers for a metric space by giving a dull probability distribution.

Other size measures of metric spaces

- Get Hill Numbers by giving a probability space a dull metric.
- Get numbers for a metric space by giving a dull probability distribution.

$$
{ }^{q} E(X):={ }^{q} D^{Z}\left(\left(\frac{1}{N}, \ldots, \frac{1}{N}\right)\right)
$$

Other size measures of metric spaces

- Get Hill Numbers by giving a probability space a dull metric.
- Get numbers for a metric space by giving a dull probability distribution.

$$
{ }^{q} E(X):={ }^{q} D^{Z}\left(\left(\frac{1}{N}, \ldots, \frac{1}{N}\right)\right)
$$

For example, analogue of species richness:

$$
{ }^{0} E(X):=\sum_{i=1}^{N}\left(\sum_{j=1}^{N} z_{i j}\right)^{-1}
$$

Other size measures of metric spaces

- Get Hill Numbers by giving a probability space a dull metric.
- Get numbers for a metric space by giving a dull probability distribution.

$$
{ }^{q} E(X):={ }^{q} D^{Z}\left(\left(\frac{1}{N}, \ldots, \frac{1}{N}\right)\right)
$$

For example, analogue of species richness:

$$
{ }^{0} E(X):=\sum_{i=1}^{N}\left(\sum_{j=1}^{N} z_{i j}\right)^{-1}
$$

Note: this is not the same as

$$
|X|=\sum_{i=1}^{N} \sum_{j=1}^{N}(Z)_{i j}^{-1}
$$

Example of scaling II

Example of scaling II

Example of scaling II

Example of bad metric space II

Example of bad metric space II

Example of bad metric space II

Example of bad metric space II

- The size ${ }^{0} E(X)$ is defined for all metric spaces.
- As X is scaled up ${ }^{0} E(X)$ increases from 1 to N.
- It is much easier to calculate ${ }^{0} E(X)$ than $|X|$.

Zooming in on a space with 6400 points

Zooming in on a space with 6400 points

Zooming in on a space with 6400 points

Zooming in on a space with 6400 points

Zooming in on a space with 6400 points

Zooming in on a space with 6400 points

Zooming in on a space with 6400 points

Zooming in on a space with 6400 points

Dimension

In a metric space we can scale all the distances. What should happen to the size?

Dimension

In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:

Dimension

In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:

Dimension

In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:

Dimension

In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:

Dimension

In a metric space we can scale all the distances.
What should happen to the size?
For example, double the distances:
2 times as big

Dimension

In a metric space we can scale all the distances.
What should happen to the size?
For example, double the distances:
2 times as big

Dimension

In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:

Dimension

In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:

2 times as big

Dimension

In a metric space we can scale all the distances. What should happen to the size?

For example, double the distances:

2 times as big

4 times as big

Dimension

In a metric space we can scale all the distances.
What should happen to the size?
For example, double the distances:

$$
2^{1}=2 \text { times as big }
$$

$$
2^{2}=4 \text { times as big }
$$

Dimension

In a metric space we can scale all the distances.
What should happen to the size?
For example, double the distances:

$$
2^{1}=2 \text { times as big }
$$

$$
2^{2}=4 \text { times as big }
$$

Think of dimension as how the size changes when the distances are changed.

Dimension

In a metric space we can scale all the distances.
What should happen to the size?
For example, double the distances:

$$
2^{1}=2 \text { times as big }
$$

$$
2^{2}=4 \text { times as big }
$$

Think of dimension as how the size changes when the distances are changed. Given 'size' can see if it gives a good idea of dimension.

Size of rectangles with 6400 points

Size of rectangles with 6400 points

Rectangles with 6400 points and 'dimension'

Rectangles with 6400 points and 'dimension'

Rectangles with 6400 points and 'dimension'

There is geometric information is ${ }^{0} E(X)$.

