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Dualities and relations

Consider the following classical dualities.

I
{

algebraic sets in Cn
} ∼= {

radical ideals in C[x1, . . . , xn]
}op

I
{

intermediate extensions K ⊂ J ⊂ L
} ∼= {

subgroups of Gal(L,K )
}op

I
{

closed convex sets in Rn
} ∼= {

‘closed’ sets of half spaces in Rn
}op

I
{

upper closed subsets of Q
} ∼= {

lower closed subsets of Q
}op

[∼= R]
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These all arise from a specified relation I ⊂ G ×M between sets G and M.

We get maps between the ordered sets of subsets

P(G )� P(M)op

Restricts to an ordered isomorphism on the ‘closed’ subsets.

Pcl(G ) ∼= Pcl(M)op
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Dualities and relations

Consider the following classical dualities.
I

{
algebraic sets in Cn

} ∼= {
radical ideals in C[x1, . . . , xn]

}op

G = Cn, M = C[x1, . . . , xn], xIp iff p(x) = 0.

I
{

intermediate extensions K ⊂ J ⊂ L
} ∼= {

subgroups of Gal(L,K )
}op

G = L, M = Aut(L,K ), `I ϕ iff ϕ(`) = `.

I
{

closed convex sets in Rn
} ∼= {

‘closed’ sets of half spaces in Rn
}op

G = Rn, M = {half spaces in Rn}, xIH iff x ∈ H.

I
{

upper closed subsets of Q
} ∼= {

lower closed subsets of Q
}op

[∼= R]

G = Q, M = Q, qIp iff q ≤ p.

These all arise from a specified relation I ⊂ G ×M between sets G and M.

Pcl(G ) ∼= Pcl(M)op
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Formal concept analysis

Here
G = some set of objects, M = some set of attributes

gIm iff object g has attribute m

We get an isomorphism of posets

Pcl(G ) ∼= Pcl(M)op

The elements of ’this’ poset are called formal concepts.
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Monoidal categories

A monoidal category (V ,⊗, 1) consists of a category V with a monoidal
product ⊗ : V × V → V and unit 1 ∈ Ob(V), together with appropriate
associativity and unit constraints.

category objects morphisms ⊗ 1

Set sets functions × {∗}

Top topological spaces continuous maps × {∗}

Vect vector spaces linear maps ⊗ C

R+ [0, ∞] a→ b iff a ≥ b + 0

Truth {T, F} a→ b iff a⇒ b & T
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Enriched category

A category C consists of a set Ob(C) together with

I for each a, b ∈ Ob(C) a specified set

C(a, b)

I for each a, b, c ∈ Ob(C) a function

◦a,b,c : C(a, b)× C(b, c)→ C(a, c)

I for each a ∈ Ob(C) an element

ida ∈ C(a, a)

satisfying appropriate associativity and identity constraints.
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Enriched category

A V-category C consists of a set Ob(C) together with

I for each a, b ∈ Ob(C) a specified object

C(a, b) ∈ Ob(V)

I for each a, b, c ∈ Ob(C) a morphism in V

◦a,b,c : C(a, b)⊗ C(b, c)→ C(a, c)

I for each a ∈ Ob(C) a morphism in V

ida : 1 −→ C(a, a)

satisfying appropriate associativity and identity constraints.
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Examples of types of enriched categories

V C(a, b) composition identity

Set set C(a, b)× C(b, c)→ C(a, c) {∗} → C(a, a)

Top space C(a, b)× C(b, c)→ C(a, c) {∗} → C(a, a)

R+ [0, ∞] C(a, b) + C(b, c) ≥ C(a, c) 0 ≥ C(a, a)

Truth {T, F} C(a, b) & C(b, c)⇒ C(a, c) T⇒ C(a, a)

An R+-category is a generalised metric space: write d(a, b) := C(a, b).
[Fails to be a metric space as d(a, b) 6= d(b, a).]

A Truth-category is a preorder: write a ≤ b iff C(a, b) = T.
[Fails to be a poset as (a ≤ b) & (b ≤ a) 6⇒ a = b.]

5/13



Examples of types of enriched categories

V C(a, b) composition identity

Set set C(a, b)× C(b, c)→ C(a, c)

{∗} → C(a, a)

ida ∈ C(a, a)

Top space C(a, b)× C(b, c)→ C(a, c)

{∗} → C(a, a)

ida ∈ C(a, a)

R+ [0, ∞] C(a, b) + C(b, c) ≥ C(a, c) 0 = C(a, a)

Truth {T, F} C(a, b) & C(b, c)⇒ C(a, c) T = C(a, a)

An R+-category is a generalised metric space: write d(a, b) := C(a, b).
[Fails to be a metric space as d(a, b) 6= d(b, a).]

A Truth-category is a preorder: write a ≤ b iff C(a, b) = T.
[Fails to be a poset as (a ≤ b) & (b ≤ a) 6⇒ a = b.]

5/13



Examples of types of enriched categories

V C(a, b) composition identity

Set set C(a, b)× C(b, c)→ C(a, c)

{∗} → C(a, a)

ida ∈ C(a, a)

Top space C(a, b)× C(b, c)→ C(a, c)

{∗} → C(a, a)

ida ∈ C(a, a)

R+ [0, ∞] C(a, b) + C(b, c) ≥ C(a, c) 0 = C(a, a)

Truth {T, F} C(a, b) & C(b, c)⇒ C(a, c) T = C(a, a)

An R+-category is a generalised metric space: write d(a, b) := C(a, b).
[Fails to be a metric space as d(a, b) 6= d(b, a).]

A Truth-category is a preorder: write a ≤ b iff C(a, b) = T.
[Fails to be a poset as (a ≤ b) & (b ≤ a) 6⇒ a = b.]

5/13



More structure

V V-functor C → V C ⊗Dop → V

Set functor copresheaf profunctor

R+
distance non-
increasing map

X → [0, ∞] cost function

Truth order-preserving
function

lower closed subset relation
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Even more structure

When V is particularly nice we can define [C,V ] a V-category structure on
the collection of V-functors C → V .

I V = Set
objects are functors C → Set.
[C, Set](F ,G ) := natural transformations F to G

I V = R+

objects are short maps C → [0, ∞].
d(F ,G ) := supc(G (c)− F (c))

I V = Truth
objects are upward closed subsets
P ≤ Q iff P ⊆ Q
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Generalizing the relation-to-duality idea

I V , suitable category to enrich over,

I C, a V-category,

I D, a V-category,

I I : Cop ⊗D → V a profunctor from C to D.

Get an adjunction of V-categories

[Cop,V ]� [D,V ]op

which restricts to an equivalence of V-categories

[Cop,V ]cl
∼= [D,V ]op

cl .

We can think of this as a single V-category B(C,D, I ).
This is called the profunctor nucleus [Pavlovic].
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Example 0: Classical Galois connections

I V = Truth,

I C = G , a set

I D = M, a set

I I a relation between G and M.

Get the construction of an isomorphism of posets from a relation

Pcl(G ) ∼= Pcl(M)op

We can think of this as a single poset B(G ,M, I ).
This gives all of the classical examples from the beginning.
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Example 1: Directed tight span

I V = R+,

I C = a metric space,

I D = C,

I I (c, c ′) := d(c , c ′).

The generalized metric space B(C, C, d) is the directed tight span of C.

C = B(C, C, d) =
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Example 2: Legendre-Fenchel transform

I V = R,

I C = Rn,

I D = (Rn)∨ the dual space,

I I (x , k) := k(x).

Maps of generalized metric spaces: Legendre-Fenchel transform

{functions on Rn}� {functions on (Rn)∨}op

-1 1 2 3 4
-1

1

2

3 f1

f2 x
−1 1
−1

1

2

3

f ∗1

f ∗2

k

{convex functions on Rn} ∼= {convex functions on (Rn)∨}op
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Example 3: Fuzzy concept analysis

I V = ([0, 1], ·, 1), thought of as fuzzy truth values,

I C = {objects},
I D = {attributes},
I I (g ,m) ∈ [0, 1], degree to which object g has an attribute m.

The resulting fuzzy poset is the fuzzy concept lattice.
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Example 4: Reflexive modules

I V = Ab, the category of Abelian groups,

I C, a one object Ab-category,

I D = C,

I I : Cop ×D → Ab is the corresponding ring R.

The adjunction is formed from the duality map Hom(−,R):

{left R-modules}� {right R-modules}op.

The nucleus is

{reflexive left R-modules} ∼= {reflexive right R-modules}op.
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