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Legendre-Fenchel transform

V a real vector space, V# is its linear dual, R := [−∞,+∞].
There is a standard pair of transforms between function spaces:

L∗ : Fun(V , R)� Fun(V#, R) : L∗,

L∗(f )(k) := sup
x∈V

{
〈k , x〉 − f (x)

}
, L∗(g)(x) := sup

k∈V#

{
〈k , x〉 − g(k)

}
.
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L∗7−→

-7.5 7.5

7.5

k
L∗7−→

−1 1

1

x

The image is always a (lower semicontinuous) convex function.
The composites L∗ ◦L∗ and L∗ ◦L∗ are convex hull operators.
We get an isomorphism between the sets of convex functions:

Cvx(V , R) ∼= Cvx(V#, R).
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R-metric structure
Fun(V , R) has an “asymmetric metric with possibly negative distances”:

d : Fun(V , R)× Fun(V , R)→ R; d(f1, f2) := sup
x∈V
{f2(x)− f1(x)}.

The Legendre-Fenchel transform is distance non-increasing:

L∗ : Fun(V , R)� Fun(V#, R)op : L∗ .

Theorem (Toland-Singer duality)

The Legendre-Fenchel transform gives an isomorphism of R-metric spaces:

Cvx(V , R) ∼= Cvx(V#, R)op.

-1 1 2 3 4
-1

1

2

3 f1

f2 x
L∗7−→

−1 1
−1

1

2

3

k

d(f1, f2) = 1 = d(L∗(f2), L∗(f1))

d(f2, f1) = 3 = d(L∗(f1), L∗(f2))
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Dualities and relations: Galois correspondences

Suppose that G and M are sets and R is a relation between them.
For example:

G = some set of objects, M = some set of attributes

g R m iff object g has attribute m

This gives rise to maps between the ordered sets of subsets

R∗ : P(G )� P(M)op :R∗

Both composites R∗ ◦ R∗ and R∗ ◦ R∗ are closure operators.
Restricts to an ordered isomorphism on the ‘closed’ subsets.

Pcl(G ) ∼= Pcl(M)op

Many classical dualities in mathematics arise in this way.
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Consider the following classical dualities.

I
{

algebraic sets in Cn
} ∼= {radical ideals in C[x1, . . . , xn]

}op

G = Cn, M = C[x1, . . . , xn]; x R p iff p(x) = 0.

I
{

intermediate extensions K ⊂ J ⊂ L
} ∼= {subgroups of Gal(L,K )

}op

G = L, M = Aut(L,K ); ` R ϕ iff ϕ(`) = `.

These both arise from a specified relation R between sets G and M.

This gives rise to maps between the ordered sets of subsets

R∗ : P(G )� P(M)op :R∗

Restricts to an ordered isomorphism on the ‘closed’ subsets.

Pcl(G ) ∼= Pcl(M)op

Both composites R∗ ◦ R∗ and R∗ ◦ R∗ are closure operators.
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Monoidal categories

A monoidal category (V ,⊗, 1) consists of a category V with a monoidal
product ⊗ : V × V → V and unit 1 ∈ Ob(V), together with appropriate
associativity and unit constraints.

category objects morphisms ⊗ 1

Set sets functions × {∗}

Truth {T, F} a→ b iff a ` b & T

R+ [0, ∞] a→ b iff a ≥ b + 0

R [−∞, ∞] a→ b iff a ≥ b + 0
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Enriched categories

A category C consists of a set Ob(C) together with

I for each a, b ∈ Ob(C) a specified set

C(a, b)

I for each a, b, c ∈ Ob(C) a function

◦a,b,c : C(a, b)× C(b, c)→ C(a, c)

I for each a ∈ Ob(C) an element

ida ∈ C(a, a)

satisfying appropriate associativity and identity constraints.

A Truth-category is a preorder: write a ≤ b iff C(a, b) = T.
[Fails to be a poset as (a ≤ b) & (b ≤ a) 6` a = b.]

An R-category is a R-metric space: write d(a, b) := C(a, b).
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Enriched categories

A R-category C consists of a set Ob(C) together with

I for each a, b ∈ Ob(C) a specified number

C(a, b) ∈ [−∞, ∞]

I for each a, b, c ∈ Ob(C) an inequality

C(a, b) + C(b, c) ≥ C(a, c)

I for each a ∈ Ob(C) an inequality

0 ≥ C(a, a)

satisfying appropriate associativity and identity constraints.

A Truth-category is a preorder: write a ≤ b iff C(a, b) = T.
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More structure

Suppose V is particularly nice (braided, closed, complete and cocomplete).
We can define a V-category structure [C,V ] on the collection of V-functors
C → V .

V V-functor C → V [C,V ]

Set functor copresheaf
category of copresheaves
and natural transformations

Truth order-preserving
function

upper closed
subset

poset of upper closed
subsets ordered by inclusion

R
distance non-
increasing map

X → [−∞, ∞] Fun(X , R) with sup-metric
d(f1, f2) := supx (f2(x)− f1(x))
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Generalizing the relation-to-duality idea

I V , suitable category to enrich over,

I C, a V-category,

I D, a V-category,

I P : Cop ⊗D → V , a V-functor (i.e. profunctor from C to D).

Get an adjunction of V-categories

P∗ : [Cop,V ]� [D,V ]op : P∗

This restricts to an equivalence of V-categories

[Cop,V ]cl
∼= [D,V ]op

cl .

This is Pavlovic’s profunctor nucleus.

(P∗f )(d) :=
∫
c
[f (c),P(c , d)] ; (P∗g)(c) :=

∫
d
[g(d),P(c , d)].

8/14



The examples of interest 1

I V = Truth
I C = G a set, i.e. a discrete preorder,

I D = M a set, i.e. a discrete preorder,

I P = R a relation G ×M → {T, F}

Gives rise to a Galois correspondence,

R∗ : P(G )� P(M)op :R∗

Restricts to an isomorphism of posets

Pcl(G ) ∼= Pcl(M)op.

9/14
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The examples of interest 2

I V = R

I C = V a vector space, as a discrete R-space,

I D = V# a vector space, as a discrete R-space,

I P the canonical pairing V ⊗ V# → R ⊂ R.

We get an adjunction of R-categories

L∗ : Fun(V , R)� Fun(V#, R)op : L∗ .

This restricts to an isomorphism of R-metric spaces (Toland-Singer duality)

Cvx(V , R) ∼= Cvx(V#, R)op.

L∗(f )(k) := sup
x∈V

{
〈k , x〉 − f (x)

}
, L∗(g)(x) := sup

k∈V#

{
〈k , x〉 − g(k)

}
.
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I P the canonical pairing V ⊗ V# → R ⊂ R.

We get an adjunction of R-categories

L∗ : Fun(V , R)� Fun(V#, R)op : L∗ .

This restricts to an isomorphism of R-metric spaces (Toland-Singer duality)

Cvx(V , R) ∼= Cvx(V#, R)op.

L∗(f )(k) := sup
x∈V

{
〈k , x〉 − f (x)

}
, L∗(g)(x) := sup

k∈V#

{
〈k , x〉 − g(k)

}
.
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Extra example 1: Classical Dedekind completion

I V = Truth,

I C = (Q,≤),
I D = C,

I P is the relation ≤.

Get the Dedekind completion of the rationals.

{upper closed subsets of Q} ∼= {lower closed subsets of Q}op ∼= [−∞,+∞]
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Extra example 2: Directed tight span

I V = R+,

I C = a metric space,

I D = C,

I P : C × C → R+ is the metric.

The resulting generalized metric space is the directed tight span of C.

C =
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Extra example 3: Fuzzy concept analysis

I V = ([0, 1], ·, 1), thought of as fuzzy truth values,

I C = {objects},
I D = {attributes},
I P(g ,m) ∈ [0, 1], degree to which object g has an attribute m.

The resulting fuzzy poset(s) is/are the fuzzy concept lattice.

E.g. [Thesis of Jonathan Elliott]

C = {a, b, c}; D = {α, β}; P =

(
1/8 1/3 1/2
1/7 2/3 1/4

)

∼=

op
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Example 4: [Villani] Optimal transport (tentative)

I V = R,

I C = {bakeries},
I D = {cafés},
I P(b, c) := current cost of moving loaf from b to c .

Generalized metric space consists of optimal price plans

{optimal price of buying from bakeries} ∼= {optimal price of selling to cafés}
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