The Legendre-Fenchel transform: a category theoretic perspective

Simon Willerton
University of Sheffield

Legendre-Fenchel transform

V a real vector space, $V \#$ is its linear dual, $\overline{\mathbb{R}}:=[-\infty,+\infty]$.
There is a standard pair of transforms between function spaces:

The image is always a (lower semicontinuous) convex function. The composites $\mathbb{L}_{*} \circ \mathbb{L}^{*}$ and $\mathbb{L}^{*} \circ \mathbb{L}_{*}$ are convex hull operators. We get an isomorphism between the sets of convex functions:

$$
\operatorname{Cvx}(V, \overline{\mathbb{R}}) \cong \operatorname{Cvx}\left(V^{\#}, \overline{\mathbb{R}}\right)
$$

Legendre-Fenchel transform

V a real vector space, $V \#$ is its linear dual, $\overline{\mathbb{R}}:=[-\infty,+\infty]$.
There is a standard pair of transforms between function spaces:

The image is always a (lower semicontinuous) convex function. The composites $\mathbb{L}_{*} \circ \mathbb{L}^{*}$ and $\mathbb{L}^{*} \circ \mathbb{L}_{*}$ are convex hull operators. We get an isomorphism between the sets of convex functions:

$$
\operatorname{Cvx}(V, \overline{\mathbb{R}}) \cong \operatorname{Cvx}\left(V^{\#}, \overline{\mathbb{R}}\right)
$$

Legendre-Fenchel transform

V a real vector space, $V \#$ is its linear dual, $\overline{\mathbb{R}}:=[-\infty,+\infty]$.
There is a standard pair of transforms between function spaces:

The image is always a (lower semicontinuous) convex function. The composites $\mathbb{L}_{*} \circ \mathbb{L}^{*}$ and $\mathbb{L}^{*} \circ \mathbb{L}_{*}$ are convex hull operators. We get an isomorphism between the sets of convex functions:

$$
\operatorname{Cvx}(V, \overline{\mathbb{R}}) \cong \operatorname{Cvx}\left(V^{\#}, \overline{\mathbb{R}}\right)
$$

Legendre-Fenchel transform

V a real vector space, $V \#$ is its linear dual, $\overline{\mathbb{R}}:=[-\infty,+\infty]$.
There is a standard pair of transforms between function spaces:

The image is always a (lower semicontinuous) convex function. The composites $\mathbb{L}_{*} \circ \mathbb{L}^{*}$ and $\mathbb{L}^{*} \circ \mathbb{L}_{*}$ are convex hull operators. We get an isomorphism between the sets of convex functions:

$$
\operatorname{Cvx}(V, \overline{\mathbb{R}}) \cong \operatorname{Cvx}\left(V^{\#}, \overline{\mathbb{R}}\right)
$$

Legendre-Fenchel transform

V a real vector space, $V \#$ is its linear dual, $\overline{\mathbb{R}}:=[-\infty,+\infty]$.
There is a standard pair of transforms between function spaces:

$$
\mathbb{L}^{*}: \operatorname{Fun}(V, \overline{\mathbb{R}}) \rightleftarrows \operatorname{Fun}\left(V^{\#}, \overline{\mathbb{R}}\right): \mathbb{L}_{*}
$$

$$
\mathbb{L}^{*}(f)(k):=\sup _{x \in V}\{\langle k, x\rangle-f(x)\}, \quad \mathbb{L}_{*}(g)(x):=\sup _{k \in V \#}\{\langle k, x\rangle-g(k)\} .
$$

The image is always a (lower semicontinuous) convex function. The composites $\mathbb{L}_{*} \circ \mathbb{L}^{*}$ and $\mathbb{L}^{*} \circ \mathbb{L}_{*}$ are convex hull operators. We get an isomorphism between the sets of convex functions:

$$
\operatorname{Cvx}(V, \overline{\mathbb{R}}) \cong \operatorname{Cvx}\left(V^{\#}, \overline{\mathbb{R}}\right)
$$

Legendre-Fenchel transform

V a real vector space, $V \#$ is its linear dual, $\overline{\mathbb{R}}:=[-\infty,+\infty]$.
There is a standard pair of transforms between function spaces:

The image is always a (lower semicontinuous) convex function. The composites $\mathbb{L}_{*} \circ \mathbb{L}^{*}$ and $\mathbb{L}^{*} \circ \mathbb{L}_{*}$ are convex hull operators. We get an isomorphism between the sets of convex functions:

$$
\operatorname{Cvx}(V, \overline{\mathbb{R}}) \cong \operatorname{Cvx}\left(V^{\#}, \overline{\mathbb{R}}\right)
$$

Legendre-Fenchel transform

V a real vector space, $V \#$ is its linear dual, $\overline{\mathbb{R}}:=[-\infty,+\infty]$.
There is a standard pair of transforms between function spaces:

$$
\mathbb{L}^{*}: \operatorname{Fun}(V, \overline{\mathbb{R}}) \rightleftarrows \operatorname{Fun}\left(V^{\#}, \overline{\mathbb{R}}\right): \mathbb{L}_{*}
$$

$$
\mathbb{L}^{*}(f)(k):=\sup _{x \in V}\{\langle k, x\rangle-f(x)\}, \quad \mathbb{L}_{*}(g)(x):=\sup _{k \in V \#}\{\langle k, x\rangle-g(k)\} .
$$

The image is always a (lower semicontinuous) convex function. The composites $\mathbb{L}_{*} \circ \mathbb{L}^{*}$ and $\mathbb{L}^{*} \circ \mathbb{L}_{*}$ are convex hull operators. We get an isomorphism between the sets of convex functions:

$$
\operatorname{Cvx}(V, \overline{\mathbb{R}}) \cong \operatorname{Cvx}\left(V^{\#}, \overline{\mathbb{R}}\right)
$$

Legendre-Fenchel transform

V a real vector space, $V \#$ is its linear dual, $\overline{\mathbb{R}}:=[-\infty,+\infty]$.
There is a standard pair of transforms between function spaces:

The image is always a (lower semicontinuous) convex function. The composites $\mathbb{L}_{*} \circ \mathbb{L}^{*}$ and $\mathbb{L}^{*} \circ \mathbb{L}_{*}$ are convex hull operators. We get an isomorphism between the sets of convex functions:

$$
\operatorname{Cvx}(V, \overline{\mathbb{R}}) \cong \operatorname{Cvx}\left(V^{\#}, \overline{\mathbb{R}}\right)
$$

Legendre-Fenchel transform

V a real vector space, $V \#$ is its linear dual, $\overline{\mathbb{R}}:=[-\infty,+\infty]$.
There is a standard pair of transforms between function spaces:

The image is always a (lower semicontinuous) convex function. The composites $\mathbb{L}_{*} \circ \mathbb{L}^{*}$ and $\mathbb{L}^{*} \circ \mathbb{L}_{*}$ are convex hull operators. We get an isomorphism between the sets of convex functions:

$$
\operatorname{Cvx}(V, \overline{\mathbb{R}}) \cong \operatorname{Cvx}\left(V^{\#}, \overline{\mathbb{R}}\right)
$$

Legendre-Fenchel transform

V a real vector space, $V \#$ is its linear dual, $\overline{\mathbb{R}}:=[-\infty,+\infty]$.
There is a standard pair of transforms between function spaces:

The image is always a (lower semicontinuous) convex function. The composites $\mathbb{L}_{*} \circ \mathbb{L}^{*}$ and $\mathbb{L}^{*} \circ \mathbb{L}_{*}$ are convex hull operators. We get an isomorphism between the sets of convex functions:

$$
\operatorname{Cvx}(V, \overline{\mathbb{R}}) \cong \operatorname{Cvx}\left(V^{\#}, \overline{\mathbb{R}}\right)
$$

Legendre-Fenchel transform

V a real vector space, $V \#$ is its linear dual, $\overline{\mathbb{R}}:=[-\infty,+\infty]$.
There is a standard pair of transforms between function spaces:

The image is always a (lower semicontinuous) convex function. The composites $\mathbb{L}_{*} \circ \mathbb{L}^{*}$ and $\mathbb{L}^{*} \circ \mathbb{L}_{*}$ are convex hull operators. We get an isomorphism between the sets of convex functions:

$$
\operatorname{Cvx}(V, \overline{\mathbb{R}}) \cong \operatorname{Cvx}\left(V^{\#}, \overline{\mathbb{R}}\right)
$$

Legendre-Fenchel transform

V a real vector space, $V \#$ is its linear dual, $\overline{\mathbb{R}}:=[-\infty,+\infty]$.
There is a standard pair of transforms between function spaces:

The image is always a (lower semicontinuous) convex function. The composites $\mathbb{L}_{*} \circ \mathbb{L}^{*}$ and $\mathbb{L}^{*} \circ \mathbb{L}_{*}$ are convex hull operators. We get an isomorphism between the sets of convex functions:

$$
\operatorname{Cvx}(V, \overline{\mathbb{R}}) \cong \operatorname{Cvx}\left(V^{\#}, \overline{\mathbb{R}}\right)
$$

Legendre-Fenchel transform

V a real vector space, $V \#$ is its linear dual, $\overline{\mathbb{R}}:=[-\infty,+\infty]$.
There is a standard pair of transforms between function spaces:

The image is always a (lower semicontinuous) convex function. The composites $\mathbb{L}_{*} \circ \mathbb{L}^{*}$ and $\mathbb{L}^{*} \circ \mathbb{L}_{*}$ are convex hull operators. We get an isomorphism between the sets of convex functions:

$$
\operatorname{Cvx}(V, \overline{\mathbb{R}}) \cong \operatorname{Cvx}\left(V^{\#}, \overline{\mathbb{R}}\right)
$$

$\overline{\mathbb{R}}$-metric structure

Fun $(V, \overline{\mathbb{R}})$ has an "asymmetric metric with possibly negative distances":

The Legendre-Fenchel transform is distance non-increasing:

$$
\mathbb{L}^{*}: \operatorname{Fun}(V, \overline{\mathbb{R}}) \rightleftarrows \operatorname{Fun}\left(V^{\#}, \overline{\mathbb{R}}\right)^{\mathrm{op}}: \mathbb{L}_{*} .
$$

Theorem (Toland-Singer duality)
The Legendre-Fenchel transform gives an isomorphism of $\overline{\mathbb{R}}$-metric spaces:

$$
\operatorname{Cvx}(V, \overline{\mathbb{R}}) \cong \operatorname{Cvx}\left(V^{\#}, \overline{\mathbb{R}}\right)^{\mathrm{op}}
$$

$$
\begin{aligned}
& \mathrm{d}\left(f_{1}, f_{2}\right)=1=\mathrm{d}\left(\mathbb{L}^{*}\left(f_{2}\right), \mathbb{L}^{*}\left(f_{1}\right)\right) \\
& \mathrm{d}\left(f_{2}, f_{1}\right)=3=\mathrm{d}\left(\mathbb{L}^{*}\left(f_{1}\right), \mathbb{L}^{*}\left(f_{2}\right)\right)
\end{aligned}
$$

Dualities and relations: Galois correspondences

Suppose that G and M are sets and \mathcal{R} is a relation between them. For example:
$G=$ some set of objects, $\quad M=$ some set of attributes $g \mathcal{R} m$ iff object g has attribute m

This gives rise to maps between the ordered sets of subsets

$$
\mathcal{R}^{*}: \mathcal{P}(G) \leftrightarrows \mathcal{P}(M)^{\mathrm{op}}: \mathcal{R}_{*}
$$

Both composites $\mathcal{R}_{*} \circ \mathcal{R}^{*}$ and $\mathcal{R}^{*} \circ \mathcal{R}_{*}$ are closure operators. Restricts to an ordered isomorphism on the 'closed' subsets.

$$
\mathcal{P}_{\mathrm{cl}}(G) \cong \mathcal{P}_{\mathrm{cl}}(M)^{\mathrm{op}}
$$

Many classical dualities in mathematics arise in this way.

Consider the following classical dualities.

- $\left\{\right.$ algebraic sets in $\left.\mathbb{C}^{n}\right\} \cong\left\{\text { radical ideals in } \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right\}^{\text {op }}$
- $\{$ intermediate extensions $K \subset J \subset L\} \cong\{\text { subgroups of } \operatorname{Gal}(L, K)\}^{\text {op }}$

Consider the following classical dualities.

- $\left\{\right.$ algebraic sets in $\left.\mathbb{C}^{n}\right\} \cong\left\{\text { radical ideals in } \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right\}^{\text {op }}$
- $\{$ intermediate extensions $K \subset J \subset L\} \cong\{\text { subgroups of } \operatorname{Gal}(L, K)\}^{\text {op }}$

These both arise from a specified relation \mathcal{R} between sets G and M.

Consider the following classical dualities.

- $\left\{\right.$ algebraic sets in $\left.\mathbb{C}^{n}\right\} \cong\left\{\text { radical ideals in } \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right\}^{\text {op }}$

$$
G=\mathbb{C}^{n}, \quad M=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] ; \quad x \mathcal{R} p \text { iff } p(x)=0
$$

- $\{$ intermediate extensions $K \subset J \subset L\} \cong\{\text { subgroups of } \operatorname{Gal}(L, K)\}^{\text {op }}$

$$
G=L, \quad M=\operatorname{Aut}(L, K) ; \quad \ell \mathcal{R} \varphi \text { iff } \varphi(\ell)=\ell
$$

These both arise from a specified relation \mathcal{R} between sets G and M.

Consider the following classical dualities.

- $\left\{\right.$ algebraic sets in $\left.\mathbb{C}^{n}\right\} \cong\left\{\text { radical ideals in } \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right\}^{\text {op }}$

$$
G=\mathbb{C}^{n}, \quad M=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] ; \quad x \mathcal{R} p \text { iff } p(x)=0
$$

- $\{$ intermediate extensions $K \subset J \subset L\} \cong\{\text { subgroups of } \operatorname{Gal}(L, K)\}^{\text {op }}$

$$
G=L, \quad M=\operatorname{Aut}(L, K) ; \quad \ell \mathcal{R} \varphi \text { iff } \varphi(\ell)=\ell
$$

These both arise from a specified relation \mathcal{R} between sets G and M.
This gives rise to maps between the ordered sets of subsets

$$
\mathcal{R}^{*}: \mathcal{P}(G) \leftrightarrows \mathcal{P}(M)^{\mathrm{op}}: \mathcal{R}_{*}
$$

Restricts to an ordered isomorphism on the 'closed' subsets.

$$
\mathcal{P}_{\mathrm{cl}}(G) \cong \mathcal{P}_{\mathrm{cl}}(M)^{\mathrm{op}}
$$

Both composites $\mathcal{R}_{*} \circ \mathcal{R}^{*}$ and $\mathcal{R}^{*} \circ \mathcal{R}_{*}$ are closure operators.

Monoidal categories

A monoidal category $(\mathcal{V}, \otimes, \mathbb{1})$ consists of a category \mathcal{V} with a monoidal product $\otimes: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$ and unit $\mathbb{1} \in \mathrm{Ob}(\mathcal{V})$, together with appropriate associativity and unit constraints.

category	objects	morphisms	\otimes	$\mathbb{1}$
Set	sets	functions	\times	$\{*\}$
Truth	$\{\mathrm{T}, \mathrm{F}\}$	$a \rightarrow b$ iff $a \vdash b$	$\&$	T
$\overline{\mathbb{R}_{+}}$	$[0, \infty]$	$a \rightarrow b$ iff $a \geq b$	+	0
$\overline{\mathbb{R}}$	$[-\infty, \infty]$	$a \rightarrow b$ iff $a \geq b$	+	0

Enriched categories

A category \mathcal{C} consists of a set $\mathrm{Ob}(\mathcal{C})$ together with

- for each $a, b \in \operatorname{Ob}(\mathcal{C})$ a specified set

$$
\mathcal{C}(a, b)
$$

- for each $a, b, c \in \mathrm{Ob}(\mathcal{C})$ a function

$$
\circ_{a, b, c}: \mathcal{C}(a, b) \times \mathcal{C}(b, c) \rightarrow \mathcal{C}(a, c)
$$

- for each $a \in \operatorname{Ob}(\mathcal{C})$ an element

$$
\operatorname{id}_{a} \in \mathcal{C}(a, a)
$$

satisfying appropriate associativity and identity constraints.

Enriched categories

A category \mathcal{C} consists of a set $\mathrm{Ob}(\mathcal{C})$ together with

- for each $a, b \in \operatorname{Ob}(\mathcal{C})$ a specified object

$$
\mathcal{C}(a, b) \in \mathrm{Ob}(\text { Set })
$$

- for each $a, b, c \in \mathrm{Ob}(\mathcal{C})$ a function

$$
\circ_{a, b, c}: \mathcal{C}(a, b) \times \mathcal{C}(b, c) \rightarrow \mathcal{C}(a, c)
$$

- for each $a \in \operatorname{Ob}(\mathcal{C})$ an element

$$
\mathrm{id}_{a} \in \mathcal{C}(a, a)
$$

satisfying appropriate associativity and identity constraints.

Enriched categories

A category \mathcal{C} consists of a set $\mathrm{Ob}(\mathcal{C})$ together with

- for each $a, b \in \operatorname{Ob}(\mathcal{C})$ a specified object

$$
\mathcal{C}(a, b) \in \mathrm{Ob}(\text { Set })
$$

- for each $a, b, c \in \operatorname{Ob}(\mathcal{C})$ a morphism in Set

$$
\circ_{a, b, c}: \mathcal{C}(a, b) \times \mathcal{C}(b, c) \rightarrow \mathcal{C}(a, c)
$$

- for each $a \in \operatorname{Ob}(\mathcal{C})$ an element

$$
\mathrm{id}_{a} \in \mathcal{C}(a, a)
$$

satisfying appropriate associativity and identity constraints.

Enriched categories

A category \mathcal{C} consists of a set $\operatorname{Ob}(\mathcal{C})$ together with

- for each $a, b \in \operatorname{Ob}(\mathcal{C})$ a specified object

$$
\mathcal{C}(a, b) \in \mathrm{Ob}(\text { Set })
$$

- for each $a, b, c \in \operatorname{Ob}(\mathcal{C})$ a morphism in Set

$$
\circ_{a, b, c}: \mathcal{C}(a, b) \times \mathcal{C}(b, c) \rightarrow \mathcal{C}(a, c)
$$

- for each $a \in \operatorname{Ob}(\mathcal{C})$ a morphism in Set

$$
\mathrm{id}_{a}:\{*\} \rightarrow \mathcal{C}(a, a)
$$

satisfying appropriate associativity and identity constraints.

Enriched categories

A \mathcal{V}-category \mathcal{C} consists of a set $\mathrm{Ob}(\mathcal{C})$ together with

- for each $a, b \in \operatorname{Ob}(\mathcal{C})$ a specified object

$$
\mathcal{C}(a, b) \in \mathrm{Ob}(\mathcal{V})
$$

- for each $a, b, c \in \operatorname{Ob}(\mathcal{C})$ a morphism in \mathcal{V}

$$
\circ_{a, b, c}: \mathcal{C}(a, b) \otimes \mathcal{C}(b, c) \rightarrow \mathcal{C}(a, c)
$$

- for each $a \in \operatorname{Ob}(\mathcal{C})$ a morphism in \mathcal{V}

$$
\mathrm{id}_{a}: \mathbb{1} \rightarrow \mathcal{C}(a, a)
$$

satisfying appropriate associativity and identity constraints.

Enriched categories

A Truth-category \mathcal{C} consists of a set $\operatorname{Ob}(\mathcal{C})$ together with

- for each $a, b \in \operatorname{Ob}(\mathcal{C})$ a specified truth value

$$
\mathcal{C}(a, b) \in\{\mathrm{T}, \mathrm{~F}\}
$$

- for each $a, b, c \in \operatorname{Ob}(\mathcal{C})$ an entailment

$$
\mathcal{C}(a, b) \& \mathcal{C}(b, c) \vdash \mathcal{C}(a, c)
$$

- for each $a \in \operatorname{Ob}(\mathcal{C})$ an entailment

$$
\mathrm{T} \vdash \mathcal{C}(a, a)
$$

satisfying appropriate associativity and identity constraints.

Enriched categories

A Truth-category \mathcal{C} consists of a set $\mathrm{Ob}(\mathcal{C})$ together with

- for each $a, b \in \operatorname{Ob}(\mathcal{C})$ a specified truth value

$$
\mathcal{C}(a, b) \in\{\mathrm{T}, \mathrm{~F}\}
$$

- for each $a, b, c \in \operatorname{Ob}(\mathcal{C})$ an entailment

$$
\mathcal{C}(a, b) \& \mathcal{C}(b, c) \vdash \mathcal{C}(a, c)
$$

- for each $a \in \operatorname{Ob}(\mathcal{C})$ an entailment

$$
\mathrm{T} \vdash \mathcal{C}(a, a)
$$

satisfying appropriate associativity and identity constraints.
A Truth-category is a preorder: write $a \leq b$ iff $\mathcal{C}(a, b)=\mathrm{T}$.
[Fails to be a poset as $(a \leq b) \&(b \leq a) \nvdash a=b$.]

Enriched categories

A $\overline{\mathbb{R}}$-category \mathcal{C} consists of a set $\mathrm{Ob}(\mathcal{C})$ together with

- for each $a, b \in \operatorname{Ob}(\mathcal{C})$ a specified number

$$
\mathcal{C}(a, b) \in[-\infty, \infty]
$$

- for each $a, b, c \in \operatorname{Ob}(\mathcal{C})$ an inequality

$$
\mathcal{C}(a, b)+\mathcal{C}(b, c) \geq \mathcal{C}(a, c)
$$

- for each $a \in \mathrm{Ob}(\mathcal{C})$ an inequality

$$
0 \geq \mathcal{C}(a, a)
$$

satisfying appropriate associativity and identity constraints.
A Truth-category is a preorder: write $a \leq b$ iff $\mathcal{C}(a, b)=\mathrm{T}$.
[Fails to be a poset as $(a \leq b) \&(b \leq a) \nvdash a=b$.]

Enriched categories

A $\overline{\mathbb{R}}$-category \mathcal{C} consists of a set $\mathrm{Ob}(\mathcal{C})$ together with

- for each $a, b \in \operatorname{Ob}(\mathcal{C})$ a specified number

$$
\mathcal{C}(a, b) \in[-\infty, \infty]
$$

- for each $a, b, c \in \operatorname{Ob}(\mathcal{C})$ an inequality

$$
\mathcal{C}(a, b)+\mathcal{C}(b, c) \geq \mathcal{C}(a, c)
$$

- for each $a \in \mathrm{Ob}(\mathcal{C})$ an inequality

$$
0 \geq \mathcal{C}(a, a)
$$

satisfying appropriate associativity and identity constraints.
A Truth-category is a preorder: write $a \leq b$ iff $\mathcal{C}(a, b)=\mathrm{T}$.
[Fails to be a poset as $(a \leq b) \&(b \leq a) \nvdash a=b$.]
An $\overline{\mathbb{R}}$-category is a $\overline{\mathbb{R}}$-metric space: write $d(a, b):=\mathcal{C}(a, b)$.

More structure

Suppose \mathcal{V} is particularly nice (braided, closed, complete and cocomplete). We can define a \mathcal{V}-category structure $[\mathcal{C}, \mathcal{V}]$ on the collection of \mathcal{V}-functors $\mathcal{C} \rightarrow \mathcal{V}$.

\mathcal{V}	\mathcal{V}-functor	$\mathcal{C} \rightarrow \mathcal{V}$	$[\mathcal{C}, \mathcal{V}]$
Set	functor	copresheaf	category of copresheaves and natural transformations
Truth	order-preserving function	upper closed subset	poset of upper closed subsets ordered by inclusion
$\overline{\mathbb{R}}$	distance non- increasing map	$X \rightarrow[-\infty, \infty]$	Fun $(X, \overline{\mathbb{R}})$ with sup-metric $\mathrm{d}\left(f_{1}, f_{2}\right):=\sup _{x}\left(f_{2}(x)-f_{1}(x)\right)$

Generalizing the relation-to-duality idea

- \mathcal{V}, suitable category to enrich over,
- \mathcal{C}, a \mathcal{V}-category,
- \mathcal{D}, a \mathcal{V}-category,
- $P: \mathcal{C}^{\mathrm{op}} \otimes \mathcal{D} \rightarrow \mathcal{V}$, a \mathcal{V}-functor (i.e. profunctor from \mathcal{C} to \mathcal{D}).

Get an adjunction of \mathcal{V}-categories

$$
P^{*}:\left[\mathcal{C}^{\mathrm{op}}, \mathcal{V}\right] \leftrightarrows[\mathcal{D}, \mathcal{V}]^{\mathrm{op}}: P_{*}
$$

This restricts to an equivalence of \mathcal{V}-categories

$$
\left[\mathcal{C}^{\mathrm{op}}, \mathcal{V}\right]_{\mathrm{cl}} \cong[\mathcal{D}, \mathcal{V}]_{\mathrm{cl}}^{\mathrm{op}}
$$

This is Pavlovic's profunctor nucleus.

$$
\left(P^{*} f\right)(d):=\int_{c}[f(c), P(c, d)] ; \quad\left(P_{*} g\right)(c):=\int_{d}[g(d), P(c, d)]
$$

The examples of interest 1

- $\mathcal{V}=$ Truth
- $\mathcal{C}=G$ a set, i.e. a discrete preorder,
- $\mathcal{D}=M$ a set, i.e. a discrete preorder,
- $P=\mathcal{R}$ a relation $G \times M \rightarrow\{\mathrm{~T}, \mathrm{~F}\}$

The examples of interest 1

- $\mathcal{V}=$ Truth
- $\mathcal{C}=G$ a set, i.e. a discrete preorder,
- $\mathcal{D}=M$ a set, i.e. a discrete preorder,
- $P=\mathcal{R}$ a relation $G \times M \rightarrow\{\mathrm{~T}, \mathrm{~F}\}$

Gives rise to a Galois correspondence,

$$
\mathcal{R}^{*}: \mathcal{P}(G) \leftrightarrows \mathcal{P}(M)^{\mathrm{op}}: \mathcal{R}_{*}
$$

Restricts to an isomorphism of posets

$$
\mathcal{P}_{\mathrm{cl}}(G) \cong \mathcal{P}_{\mathrm{cl}}(M)^{\mathrm{op}}
$$

The examples of interest 2

- $\mathcal{V}=\overline{\mathbb{R}}$
- $\mathcal{C}=V$ a vector space, as a discrete $\overline{\mathbb{R}}$-space,
- $\mathcal{D}=V^{\#}$ a vector space, as a discrete $\overline{\mathbb{R}}$-space,
- P the canonical pairing $V \otimes V^{\#} \rightarrow \mathbb{R} \subset \overline{\mathbb{R}}$.

The examples of interest 2

- $\mathcal{V}=\overline{\mathbb{R}}$
- $\mathcal{C}=V$ a vector space, as a discrete $\overline{\mathbb{R}}$-space,
- $\mathcal{D}=V^{\#}$ a vector space, as a discrete $\overline{\mathbb{R}}$-space,
- P the canonical pairing $V \otimes V^{\#} \rightarrow \mathbb{R} \subset \overline{\mathbb{R}}$.

We get an adjunction of $\overline{\mathbb{R}}$-categories

$$
\mathbb{L}^{*}: \operatorname{Fun}(V, \overline{\mathbb{R}}) \rightleftarrows \operatorname{Fun}\left(V^{\#}, \overline{\mathbb{R}}\right)^{\mathrm{op}}: \mathbb{L}_{*}
$$

This restricts to an isomorphism of $\overline{\mathbb{R}}$-metric spaces (Toland-Singer duality)

$$
\operatorname{Cvx}(V, \overline{\mathbb{R}}) \cong \operatorname{Cvx}\left(V^{\#}, \overline{\mathbb{R}}\right)^{\mathrm{op}}
$$

$\mathbb{L}^{*}(f)(k):=\sup _{x \in V}\{\langle k, x\rangle-f(x)\}, \quad \mathbb{L}_{*}(g)(x):=\sup _{k \in V \#}\{\langle k, x\rangle-g(k)\}$.

Extra example 1: Classical Dedekind completion

- $\mathcal{V}=$ Truth,
- $\mathcal{C}=(\mathbb{Q}, \leq)$,
- $\mathcal{D}=\mathcal{C}$,
- P is the relation \leq.

Get the Dedekind completion of the rationals.
$\{$ upper closed subsets of $\mathbb{Q}\} \cong\{\text { lower closed subsets of } \mathbb{Q}\}^{\mathrm{op}} \cong[-\infty,+\infty]$

Extra example 2: Directed tight span

- $\mathcal{V}=\overline{\mathbb{R}_{+}}$,
- $\mathcal{C}=$ a metric space,
- $\mathcal{D}=\mathcal{C}$,
- $P: \mathcal{C} \times \mathcal{C} \rightarrow \overline{\mathbb{R}_{+}}$is the metric.

The resulting generalized metric space is the directed tight span of \mathcal{C}.

Extra example 3: Fuzzy concept analysis

- $\mathcal{V}=([0,1], \cdot, 1)$, thought of as fuzzy truth values,
- $\mathcal{C}=\{$ objects $\}$,
- $\mathcal{D}=\{$ attributes $\}$,
- $P(g, m) \in[0,1]$, degree to which object g has an attribute m.

The resulting fuzzy poset(s) is/are the fuzzy concept lattice.
E.g. [Thesis of Jonathan Elliott]

$$
\mathcal{C}=\{a, b, c\} ; \quad \mathcal{D}=\{\alpha, \beta\} ; \quad P=\left(\begin{array}{lll}
1 / 8 & 1 / 3 & 1 / 2 \\
1 / 7 & 2 / 3 & 1 / 4
\end{array}\right)
$$

Example 4: [Villani] Optimal transport (tentative)

- $\mathcal{V}=\overline{\mathbb{R}}$,
- $\mathcal{C}=\{$ bakeries $\}$,
- $\mathcal{D}=\{$ cafés $\}$,
- $P(b, c):=$ current cost of moving loaf from b to c.

Generalized metric space consists of optimal price plans
$\{$ optimal price of buying from bakeries $\} \cong\{$ optimal price of selling to cafés $\}$

