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Legendre-Fenchel transform

V a real vector space, V# is its linear dual, R := [—oc0, +00].
There is a standard pair of transforms between function spaces:

IL*: Fun(V,R) = Fun(V# R): L.,

IL*(f) (k) == sup {(k,x) — f(x)}, L.(g)(x):= sup {(k x)
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The image is always a (lower semicontinuous) convex function.

The composites L, oIL* and IL* o IL,, are convex hull operators.

We get an isomorphism between the sets of convex functions:

Cvx(V,R) = Cvx(V# R).

—g(k)}.
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R-metric structure
Fun(V,R) has an “asymmetric metric with possibly negative distances”:

d: Fun(V,R) x Fun(V,R) = R; d(f,h):= Sleje{fg(x) —fA(x)}.

The Legendre-Fenchel transform is distance non-increasing:

IL*: Fun(V,R) = Fun(V# R)%: L,.

Theorem (Toland-Singer duality)
The Legendre-Fenchel transform gives an isomorphism of R-metric spaces:

Cvx(V, R) = Cvx(V# R)°P.
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Dualities and relations: Galois correspondences

Suppose that G and M are sets and R is a relation between them.

For example:

G = some set of objects, M = some set of attributes

g R m iff object g has attribute m
This gives rise to maps between the ordered sets of subsets
R*: P(G) S P(M)P R,

Both composites R o R* and R* o R, are closure operators.
Restricts to an ordered isomorphism on the ‘closed’ subsets.

PCI(G) = PCI(M)OP

Many classical dualities in mathematics arise in this way.
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Consider the following classical dualities.
> {algebraic sets in C"} = {radical ideals in Cxq, ... ,x,,]}op

> {intermediate extensions K C J C L} = {subgroups of Gal(L, K)}*"
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Monoidal categories

A monoidal category (V, ®,1) consists of a category }V with a monoidal
product ®: ¥V x V — V and unit 1 € Ob(V), together with appropriate
associativity and unit constraints.

category  objects morphisms ® 1

Set sets functions X {x}

Truth {T.F} a—biffakb & T

R, [0,00] a—biffa>b + 0

R [-o0,00] a—biffa>b + 0
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Enriched categories

A category C consists of a set Ob(C) together with
» for each a, b € Ob(C) a specified set

C(a, b)
» for each a, b, c € Ob(C) a function
oapbc: C(a, b) xC(b,c) = C(a,c)
» for each a € Ob(C) an element

id, € C(a, a)

satisfying appropriate associativity and identity constraints.
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Enriched categories

A V-category C consists of a set Ob(C) together with
» for each a, b € Ob(C) a specified object

C(a, b) € Ob(V)
» for each a, b, c € Ob(C) a morphism in V
Oapbec: C(a, b) ®C(b,c) = C(a,c)
» for each a € Ob(C) a morphism in V

id,: 1 — C(a,a)

satisfying appropriate associativity and identity constraints.
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Enriched categories

A Truth-category C consists of a set Ob(C) together with
» for each a, b € Ob(C) a specified truth value

C(a, b) € {T,F}
» for each a, b, c € Ob(C) an entailment
C(a,b)&C(b,c)FC(a,c)
» for each a € Ob(C) an entailment

TFC(a,a)

satisfying appropriate associativity and identity constraints.
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An R-category is a R-metric space: write d(a, b) := C(a, b).

6/14



More structure

Suppose V is particularly nice (braided, closed, complete and cocomplete).
We can define a V-category structure [C, V] on the collection of V-functors
C—V.

V V-functor C—V IC,V]

category of copresheaves

Set functor copresheaf ;
and natural transformations

order-preserving  upper closed  poset of upper closed

Truth ) i
function subset subsets ordered by inclusion

distance non-
increasing map

Fun(X,R) with sup-metric
d(f1, f2) 1= supx(f2(x) — fi(x))

=

X — [—o00, 00
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Generalizing the relation-to-duality idea

P> V), suitable category to enrich over,

» C, a V-category,

» D, a V-category,

» P:CP®D — V, a V-functor (i.e. profunctor from C to D).

Get an adjunction of V-categories
P*: [C°P,V] = [D, V]°P: P,
This restricts to an equivalence of V-categories
[CP V]a = [D, V]

This is Pavlovic's profunctor nucleus.

(PA)(d) = [[F(e) Plc.d)] i (Pg)(e) = [ [g(d), P(c,d)]
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The examples of interest 1

» )V = Truth

» C = G a set, i.e. a discrete preorder,
» D = M a set, i.e. a discrete preorder,
» P =T arelation G x M — {T,F}
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The examples of interest 2

> V=R

» C = V a vector space, as a discrete R-space,
» D = V7 a vector space, as a discrete R-space,
» P the canonical pairing V ® V# - R C R.
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Extra example 1: Classical Dedekind completion

» )V = Truth,
> C=(Q, <),
> D =_,

> P is the relation <.

Get the Dedekind completion of the rationals.

{upper closed subsets of Q} = {lower closed subsets of Q}°P = [—c0, + 0]
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Extra example 2: Directed tight span

> V=R,
» C = a metric space,
» D=C,

» P:C xC — Ry is the metric.

The resulting generalized metric space is the directed tight span of C.

f() b T

b ¢ y
. t\a/ f(b)

C

(a)

—1
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Extra example 3: Fuzzy concept analysis

» V= ([0,1],-,1), thought of as fuzzy truth values,

» C = {objects},

» D = {attributes},

» P(g, m) € [0,1], degree to which object g has an attribute m.
The resulting fuzzy poset(s) is/are the fuzzy concept lattice.

E.g. [Thesis of Jonathan Elliott]

1/8 1/3 1/2
C={abc}; D={ap} P:<1§7 2?3 1?4)

op

1%
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Example 4: [Villani] Optimal transport (tentative)

> V=R,

» C = {bakeries},

» D = {cafés},

» P(b, c) := current cost of moving loaf from b to c.

Generalized metric space consists of optimal price plans

{optimal price of buying from bakeries} = {optimal price of selling to cafés}
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